A Mechanical Proof of the Chinese Remainder Theorem

David M. Russinoff
Advanced Micro Devices, Inc.

david.russinoff@amd.com
http://www.onr.com/user/russ/david
Informal Statement

Theorem Let $m_1, \ldots, m_k \in \mathbb{N}$ be pairwise relatively prime moduli and let $a_1, \ldots, a_k \in \mathbb{N}$. There exists $x \in \mathbb{N}$ such that

\[
x \equiv a_1 \pmod{m_1} \\
x \equiv a_2 \pmod{m_2} \\
\vdots \\
x \equiv a_k \pmod{m_k}.
\]

If x' satisfies the same congruences, then

\[x' \equiv x \pmod{m_1 m_2 \cdots m_k}.
\]
ACL2 Formalization

(defun g-c-d (x y)
 (declare (xargs :measure (nfix (+ x y))))
 (if (zp x)
 y
 (if (zp y)
 x
 (if (<= x y)
 (g-c-d x (- y x))
 (g-c-d (- x y) y)))))

(defun rel-prime (x y)
 (= (g-c-d x y) 1))

(defun congruent (x y m)
 (= (rem x m) (rem y m)))

(defun congruent-all (x a m)
 (if (endp m)
 t
 (and (congruent x (car a) (car m))
 (congruent-all x (cdr a) (cdr m)))))

(defthm chinese-remainder-theorem
 (implies (and (natp-all a)
 (rel-prime-moduli m)
 (= (len a) (len m)))
 (and (natp (crt-witness a m))
 (congruent-all (crt-witness a m) a m))))
Informal Proof

Lemma 1 If $x, y \in \mathbb{N}$ are relatively prime, then there exists $s \in \mathbb{Z}$ such that $sy \equiv 1 \pmod{x}$.

Lemma 2 If $x, y, z \in \mathbb{N}$ and x is relatively prime to both y and z, then x is relatively prime to yz.

Proof of CRT: Let $M = m_1m_2\cdots m_k$. For $i = 1, \ldots, k$, let $M_i = M/m_i$ and find s_i such that $s_iM_i \equiv 1 \pmod{m_i}$. Let

$$x = a_1s_1M_1 + a_2s_2M_2 + \cdots + a_k s_k M_k.$$

Then

$$x \equiv a_i s_i M_i \equiv a_i \pmod{m_i}.$$
$N \equiv 6 \pmod{25}$
Example

Suppose we have $10000 \leq N \leq 50000$ and

\[
N \equiv 6 \pmod{25}
\]
\[
N \equiv 13 \pmod{36}
\]
\[
N \equiv 28 \pmod{49}
\]

Then we may solve for N as follows:

\[
M = 25 \cdot 36 \cdot 49 = 44100
\]
\[
M_1 = 36 \cdot 49 = 1764
\]
\[
M_2 = 25 \cdot 49 = 1225
\]
\[
M_3 = 25 \cdot 36 = 900
\]

\[
1764s_1 \equiv 1 \pmod{25} \iff 14s_1 \equiv 1 \pmod{25} \iff s_1 \equiv 9 \pmod{25}
\]
\[
1225s_2 \equiv 1 \pmod{36} \iff s_2 \equiv 1 \pmod{36}
\]
\[
900s_3 \equiv 1 \pmod{49} \iff 18s_3 \equiv 1 \pmod{49} \iff s_3 \equiv 30 \pmod{49}
\]

\[
a_1 = 6, \ a_2 = 13, \ a_3 = 28
\]

\[
x = a_1 M_1 s_1 + a_2 M_2 s_2 + a_3 M_3 s_3
\]
\[
= 6 \cdot 1764 \cdot 9 + 13 \cdot 1225 \cdot 1 + 28 \cdot 900 \cdot 30
\]
\[
= 867281
\]
\[
\equiv 29281 \pmod{44100}
\]

\[
N = 29281
\]
Proof of Lemma 1

Lemma 1 If \(x, y \in \mathbb{N} \) are relatively prime, then there exists \(s \in \mathbb{Z} \) such that \(sy \equiv 1 \pmod{x}. \)

This is a special case of the following:

For all \(x, y \in \mathbb{N} \), there exist \(r, s \in \mathbb{Z} \) such that \(rx + sy = \gcd(x, y). \)

The proof is by induction on \(x + y \):

(1) If \(x = 0 \), then \(r = 0 \) and \(s = 1. \)

(2) If \(y = 0 \), then \(r = 1 \) and \(s = 0. \)

(3) If \(0 < x \leq y \), then find \(r' \) and \(s' \) such that

\[
\begin{align*}
 r'x + s'(y - x) &= \gcd(x, y - x) = \gcd(x, y) \\
 \text{and let } r &= r' - s' \text{ and } s = s'. \text{ Then} \\
 rx + sy &= (r' - s')x + s'y = r'x + s'(y - x) = \gcd(x, y).
\end{align*}
\]

(4) If \(0 < y < x \), then find \(r' \) and \(s' \) such that

\[
\begin{align*}
 r'(x - y) + s'y &= \gcd(x - y, y) = \gcd(x, y) \\
 \text{and let } r &= r' \text{ and } s = s' - r'.
\end{align*}
\]
Formal Proof

(mutual-recursion
 (defun r (x y)
 (declare (xargs :measure (nfix (+ x y))))
 (if (zp x)
 0
 (if (zp y)
 1
 (if (<= x y)
 (- (r x (- y x)) (s x (- y x)))
 (r (- x y) y))))

(defun s (x y)
 (declare (xargs :measure (nfix (+ x y))))
 (if (zp x)
 1
 (if (zp y)
 0
 (if (<= x y)
 (s x (- y x))
 (- (s (- x y) y) (r (- x y) y))))))
)

(defun r-s-lemma
 (implies (and (natp x)
 (natp y))
 (= (+ (* (r x y) x)
 (* (s x y) y))
 (g-c-d x y))))

7
Proof of Lemma 2

Lemma 2 If \(x, y, z \in \mathbb{N} \) and \(x \) is relatively prime to both \(y \) and \(z \), then \(x \) is relatively prime to \(yz \).

This is a consequence of the following basic properties of \(\gcd \) and primes:

1. \(\gcd(x, y) \) divides both \(x \) and \(y \).
2. If \(d \) divides both \(x \) and \(y \), then \(d \) divides \(\gcd(x, y) \).
3. If \(x > 1 \), then some prime divides \(x \).
4. If a prime \(p \) divides \(ab \), then \(p \) divides either \(a \) or \(b \).

It would take some work to prove these in ACL2. Fortunately, there is a more direct route to CRT.
Alternate Approach

Lemma 3 Let \(x, y_1, y_2, \ldots, y_k \in \mathbb{N} \) and \(p = y_1 \cdots y_k \). If \(x \) is relatively prime to each \(y_i \), then there exist \(c, d \in \mathbb{Z} \) such that \(cx + dp = 1 \).

Proof: Let \(p' = y_1 \cdots y_{k-1} \). Assume that

\[
x r + s y_k = 1
\]

and, by induction, that

\[
c' x + d' p' = 1.
\]

Then

\[
(sd')p = (s y_k)(d' p')
\]

\[
= (1 - r x)(1 - c' x)
\]

\[
= 1 - (r + c' - r c' x) x.
\]

Thus, if \(c = r + c' - r c' x \) and \(d = s d' \), then

\[
x c + d p = 1.
\]
Formal Proof

(defun c (x l)
 (if (endp l)
 0
 (- (+ (r x (car l))
 (c x (cdr l)))
 (* (r x (car l))
 (c x (cdr l))
 x))))

(defun d (x l)
 (if (endp l)
 1
 (* (s x (car l))
 (d x (cdr l)))))

(defun c-d-lemma
 (implies (and (natp x)
 (natp-all l)
 (rel-prime-all x l))
 (= (+ (* (c x l) x)
 (* (d x l) (prod l)))
 1)))
Definition of \texttt{crt-witness}

\begin{verbatim}
(defun one-mod (x l)
 (* (d x 1)
 (prod 1)
 (d x 1)
 (prod 1))

(defun crt1 (a m l)
 (if (endp a)
 0
 (+ (* (car a) (one-mod (car m) (remove (car m) l)))
 (crt1 (cdr a) (cdr m) l))))

(defun crt-witness (a m) (crt1 a m m))
\end{verbatim}
The Main Lemma

We prove the following generalization of CRT:

(defthm crtl-lemma
 (implies (and (natp-all a)
 (rel-prime-moduli l)
 (sublistp m l)
 (= (len a) (len m)))
 (congruent-all (crl a m l) a m)))

The proof is by induction, as suggested by the definition:

(defun crtl (a m l)
 (if (endp a) 0
 (+ (* (car a) (one-mod (car m) (remove (car m) l)))
 (crl (cdr a) (cdr m) l))))

In the inductive case, the conclusion of the lemma expands as follows:

(and (congruent (* (car a)
 (one-mod (car m) (remove (car m) l)))
 (crl (cdr a) (cdr m) l))
 (car a)
 (car m))
(congruent-all (* (car a)
 (one-mod (car m) (remove (car m) l)))
 (crl (cdr a) (cdr m) l))
 (cdr a)
 (cdr m))).
The Final Result

CRT is derived as an instance of \textit{crt1-lemma}:

\begin{verbatim}
(defthm crt1-lemma
 (implies (and (natp-all a)
 (rel-prime-moduli l)
 (sublistp m l)
 (= (len a) (len m)))
 (congruent-all (crt1 a m l) a m)))
\end{verbatim}

\begin{verbatim}
(defthm chinese-remainder-theorem
 (implies (and (natp-all a)
 (rel-prime-moduli m)
 (= (len a) (len m)))
 (and (natp (crt-witness a m))
 (congruent-all (crt a m) a m))))
\end{verbatim}