
Formal Verification of a Chained Multiply-Add
Design: Combining Theorem Proving and

Equivalence Checking
David Russinoff, Javier Bruguera, Cuong Chau,

Mayank Manjrekar, Nicholas Pfister, and Harsha Valsaraju
Austin Design Center

Arm, Inc.
Austin, Texas, U.S.A

{david.russinoff, javier.bruguera, cuong.chau, mayank.manjrekar2, nicholas.pfister, harsha.valsaraju}@arm.com

Abstract—We present a hybrid methodology for the formal
verification of arithmetic RTL designs that combines sequential
logic equivalence checking with interactive theorem proving
in a two-step process. First, an intermediate model of the
design is extracted by hand and coded in Restricted Algorithmic
C, a simple C subset augmented by the C++ register class
templates of Algorithmic C, which provide the bit manipulation
features of Verilog. The model is designed to mirror the RTL
microarchitecture closely enough to allow efficient equivalence
checking, but sufficiently abstract to be amenable to formal
analysis. The model is then automatically translated to the logic of
the ACL2 theorem prover, which is used to establish correctness
with respect to an architectural specification. As an illustration,
we describe the modeling and proof of correctness of a chained
multiply-add module, designed to test techniques for area and
power reduction and intended for implementation in future Arm
graphics processors.

Index Terms—formal verification, theorem proving, equiva-
lence checking, chained multiply-add

I. INTRODUCTION

While most formal hardware verification efforts are based
on automatic methods such as model checking and sequential
logic equivalence checking, it is widely acknowledged that
the inherent complexity limitations of these methods render
then inadequate for floating-point verification. For a relatively
simple arithmetic design, confidence in correctness may be
attained by establishing equivalence with either a trusted high-
level C++ “golden model” or a similar legacy design, but in
general, comprehensive formal verification of a state-of-the-
art floating-point unit is achievable only through interactive
theorem proving, which is not subject to the complexity
limitations of automatic tools.

Various theorem provers have been applied to the formaliza-
tion of floating-point arithmetic and the verification of arith-
metic algorithms [1]–[3]. However, a proof of correctness of
a high-level algorithm cannot guarantee that it has been faith-
fully implemented in hardware. A prerequisite for applying
interactive theorem proving to arithmetic circuit verification
at the register-transfer level is a reliable means of converting
a low-level design to a semantically equivalent representation

in a formal logic. Early efforts in floating-point design ver-
ification [4], [5] were based on formal models derived by
hand from microcode or register-transfer logic (RTL) designs,
ignoring implementation details that could affect the result
of a computation. More recently, in at least two industrial
settings [6], [7], more trustworthy formalizations have been
achieved by mechanical translation from Verilog directly to the
logic of the ACL2 prover [8]. While these projects are based
on very different translation schemes (“deep” vs. “shallow
embedding”), both burden the user with an unwieldy body of
ACL2 code, at least comparable in size to the Verilog source.

RTL
design

RAC
model

ACL2
model

ACL2
spec

SLEC RAC ACL2

Fig. 1. Verification workflow

At Arm, Inc., we have addressed this problem with a hybrid
solution that combines equivalence checking with theorem
proving in a two-step process, as diagrammed in Figure 1.
First, an intermediate model of a floating-point design is de-
rived from the RTL by hand, coded in Restricted Algorithmic
C (RAC), a simple subset of C augmented by the register
class templates of Algorithmic C [9], which essentially provide
the bit manipulation features of Verilog. The objective is a
high-level model that is more manageable than the RTL but
mirrors its microarchitecture to the extent required to allow
efficient equivalence checking between the design and the
model. For this purpose, we have found the Mentor Graphics
tool SLEC [10] to be effective. The model is then processed by
a RAC-ACL2 translator, which generates a logical representa-
tion of the design. Finally, the ACL2 prover is used to check
a proof of correctness with respect to a formal architectural
specification, which is encoded in the same logic.

This methodology has been successfully applied in the
verification of a wide range of arithmetic components of
commercial CPUs and GPUs, including high-precision multi-
pliers and adders, 64-bit integer multipliers and dividers, and
a variety of floating-point division and square root modules.

One important result is a proof of correctness of a fused
multiply-add (FMA) module that serves as a central compo-
nent of Arm’s GPUs. The defining characteristic of a graphics
processing architecture is the coordination of many identical
multi-purpose arithmetic units, which may be executed in
parallel to perform the same operations on large sets of data.
Such hardware is useful in a variety of scientific applications
that are naturally accelerated by massive data parallelism,
including efficient image rendering. Since the FMA module
is replicated many times per core, it accounts for a significant
portion of the core’s area as well as its power consumption.
Most of the choices underlying its design are driven by these
considerations.

As an illustration of our methodology, we shall describe
the modeling and formal verification of a variant of this
design, a chained multiply-add (CMA) module, designed for
the purpose of investigating some proposed implementation
techniques intended to improve performance and reduce area
and power. Although our concerns regarding its correctness
may not be of the same urgency that attends the imminent
release of a product, it is nonetheless an important objective, as
it provides assurance that the data derived from the experiment
are reliable. Since this CMA prototype is the first of its kind,
RTL-RTL equivalence is not a viable alternative to theorem
proving. Moreover, since the design is nontrivial but less
complicated than, for example, a high-precision high-radix
divider, it provides a suitable illustration of our verification
methodology, which is described in Section II. In Section III,
we present an overview of the CMA design, its RAC model,
and the proof of correctness. Section IV discusses the results
of the experiment.

II. VERIFICATION METHODOLOGY

The RAC programming language, which is fully docu-
mented in [11, chap. 15], is intended for modeling RTL
designs that employ complex and sophisticated arithmetic
algorithms and optimization techniques. For our purpose, a
RAC model must be sufficiently faithful to the RTL to allow
efficient processing by SLEC, thereby guaranteeing functional
equivalence. On the other hand, the language and model should
be as simple and abstract as possible in order to facilitate
formal mathematical analysis and, in particular, mechanical
translation to ACL2.

The RAC data types include the basic integer types of C
along with the register class templates of Algorithmic C, which
provide signed and unsigned integer and fixed-point registers
of arbitrary width and precision. In addition to the standard
arithmetic, logical, and shift operations, the register classes
include bit slice extraction and assignment methods with the
semantics of the corresponding Verilog operators, thereby eas-
ing the burden of equivalence checking. All language features
are supported by SLEC.

ACL2 is both an executable programming language, essen-
tially an applicative subset of Common Lisp, and a first order
logic supported by a heuristic interactive theorem prover based
on recursion and mathematical induction. A RAC program

ui32 add8(ui32 a, ui32 b) {
ui32 res; ui8 sum;
for (uint i=0; i<4; i++) {
si8 aS = a.slc<8>(8 * i);
si8 bS = b.slc<8>(8 * i);
si9 sumS = aS + bS;
if (sumS < -128) {sum = -128;}
else if (sum >= 128) {sum = 127;}
else {sum = sumS;}
res.set_slc(8 * i, sum);}

return res;}

Fig. 2. A vector signed integer adder

is subject to a number of restrictions intended to enable its
translation to ACL2. A functional programming paradigm is
enforced by disallowing C pointers and reference parameters.
Thus, a RAC function is free of side-effects and simply returns
a value. In order to compensate for these restrictions, two
standard C++ library class templates are supported:

• Since the elimination of pointers precludes the usual C
mechanism for passing arrays as function parameters,
RAC supports the array template, which allows arrays
to be passed by value;

• The tuple template may be instantiated as the return
type of a function, providing the effect of multiple-valued
functions.

Various constraints are imposed on the control structure
of a function in order to facilitate its transformation into an
ACL2 function. Conditional branching (if ... then ...
else) is supported along with restricted versions of switch
and for. A return statement can occur only as the final
statement of a function branch.

A simple example of a RAC function illustrating the use of
integer registers is listed in Figure 2. Note that unsigned and
signed integers of width n are denoted by the type declarations
uin and sin, respectively. Thus, the function takes 2 32-bit
unsigned arguments, from which it extracts corresponding 8-
bit slices, adds them as signed integers, saturates the sums to
lie in the range [−128, 128), and stores them in a 32-bit result
vector. The bit slice extraction method slc has a template
parameter indicating the width of the slice and an argument
representing the base index. The set_slc method, which
writes a value to a slice, takes two arguments, which determine
the base index of the slice and the value to be written, the type
of which determines the width of the slice.

The translation from RAC to ACL2 is performed in two
phases: a special-purpose C++ parser based on Flex and Bison
[12] transforms a RAC program into a set of S-expressions
(linked lists, the data of Lisp and ACL2), which are converted
to ACL2 functions by a code generator written in ACL2
itself. As a by-product, the parser produces a more readable
pseudocode version of a model, replacing the cryptic syntax
of C++ methods with the familiar notation of Verilog. Thus,
the first two assignments of the function add8 are printed as

si8 aS = a[8*i+7:8*i];
si8 bS = b[8*i+7:8*i];

(DEFUN ADD8-LOOP (I A B SUM RES)
(IF (AND (INTEGERP I) (< I 4))

(LET* ((AS (BITS A (+ (* 8 I) 7) (* 8 I)))
(BS (BITS B (+ (* 8 I) 7) (* 8 I)))
(SUMS (BITS (+ (SI AS 8) (SI BS 8)) 8 0))
(SUM (IF1 (LOG< (SI SUMS 9) -128)

(BITS -128 7 0)
(IF1 (LOG>= SUM 128)

(BITS 127 7 0)
(BITS (SI SUMS 9) 7 0))))

(RES (SETBITS RES 32
(+ (* 8 I) 7) (* 8 I)
SUM)))

(ADD8-LOOP-0 (+ I 1) A B SUM RES))
(MV SUM RES)))

(DEFUN ADD8 (A B)
(MV-LET (SUM RES) (ADD8-LOOP 0 A B 0 0)
RES))

Fig. 3. Translation of the signed integer adder

and the final slice assignment as

res[8*i+7:8*i] = sum;

The translation of add8 is displayed in Figure 3. Note that the
the problem of mapping an imperative paradigm to a functional
language is addressed by two tactics:

• Every RAC for loop is converted to an auxiliary
recursive ACL2 function. Constraints imposed on the
format of a loop guarantee that execution of this function
terminates. In this case, the arguments of the recursive
function ADD8-LOOP include the loop variable I, which
is incremented in the recursive call. The variables that
are updated by the loop, SUM and RES, are returned as
a multiple value.

• A sequence of RAC assignment statements is converted
to a nest of bindings, using two ACL2 macros: LET*,
which performs sequential bindings, and MV-LET, which
handles the result of a multiple-valued function and binds
variables in parallel.

The translation employs a library of ACL2 functions that are
defined to correspond to RAC primitives and emulate the
semantics of C:

• LOG<, LOG>=, etc., are boolean comparators that return
1 or 0;

• IF1 is similar to the Lisp IF but tests its first argument
against 0 instead of NIL;

• BITS and SETBITS, respectively, extract and assign
slices of a bit vector;

• SI computes the signed integer value of a register of a
given width.

Note that variable types do not explicitly appear in the
translation. The problem of translating a typed language
to an untyped language is addressed mainly by converting
implicit register evaluations and type conversions to explicit
computations. Thus, in the expression that is derived from the
declaration

si9 sumS = aS + bS;

the registers AS and BS are evaluated according to their type,
i.e., by computing their 8-bit signed integer values, and when
the sum is assigned to the 9-bit register SUMS, the low order
9 bits are extracted.

In comparison to direct translation from Verilog to ACL2,
the primary advantage of an intermediate RAC model is that
it provides an abstract and readable representation of a design
that is amenable to mathematical analysis, and consequently
a compact ACL2 model that is more susceptible to formal
proof. The construction of a RAC model is generally a
compromise between two opposing objectives: while a higher-
level model allows a simpler correctness proof, successful
equivalence checking of a complex design generally depends
on structural similarities between the model and the design.
SLEC provides a facility for exploiting such similarities by
mapping intermediate internal RTL signals to corresponding
local variables of the model, which effectively decomposes the
equivalence computation.

Establishing the appropriate level of detail of the model is
guided by experience and often involves some experimenta-
tion. As a rule of thumb, the model should be as abstract as
possible while performing the same essential computations as
the design. For example, in the case of an iterative divider, this
means precisely replicating the partial remainder and quotient
at each iteration. Successful processing of a high-precision
multiplier typically requires replication of the Booth encoder
as well as the intermediate computations at each level of the
compression tree.

The translation of Arm floating-point units through this
method has been found to result in an average reduction in
code size by approximately 85%. The RAC model serves other
purposes as well, including documentation, design guidance,
and simulation in a C++ environment. Extracting the model
from the design may require significant effort, but much of
this effort also contributes to the proof of correctness.

Such proofs are based on a unified arithmetic theory of
register-transfer logic and computer arithmetic, which is sup-
ported by an ACL2 RTL library of formal results developed
over the course of twenty-five years of analysis and verification
of commercial hardware designs produced by AMD, Intel, and
Arm. These results cover the following areas:

• Register-transfer logic: properties of bit vectors, integer
and fixed-point representations, bitwise logical opera-
tions;

• Floating-point arithmetic: floating-point formats and the
relevant properties of rational numbers, IEEE rounding
and other modes of rounding that are commonly used in
the implementation of floating-point units;

• Implementation of elementary arithmetic operations: in-
teger addition, parallel prefix adders, leading zero antic-
ipation; variations of Booth multiplication; SRT division
and square root extraction; multiplication-based division;

• Instruction set architectures: comparison of the floating-
point behaviors of IEEE-compliant x87, SSE, and Arm
CPUs with emphasis on variations in exception handling.

The theory and the RTL library are thoroughly documented in
[11, chaps. 1–14].

It cannot be denied that the application of this methodology
to a design of any complexity involves significant effort, a
major portion of which lies in the development of the RAC
model, which requires a detailed understanding of the design.
Any bugs in the RTL are most likely to be detected during this
phase. Once the model is in place, coding the SLEC script
is straightforward and execution of the tool proceeds auto-
matically. Initial mismatches usually indicate minor bugs in
the model. Once these are corrected, a successful equivalence
check may run in several minutes or up to several hours.

ACL2, on the other hand, requires considerable guidance
by the user. Development of a formal proof of correctness is
an exacting interactive process, resulting in a script consisting
of a long sequence of lemmas and hints that are sufficient to
guide the prover to the final result. Occasionally, this process
reveals a bug in the model, which at this point indicates a bug
in the RTL. A successful proof, once achieved, provides high
confidence in the correctness of a design.

Subsequent RTL modifications necessitate rerunning the
SLEC script and may also require corresponding changes in
the model as well as the ACL2 script. The most common
modifications, however, are driven by timing requirements and
are not reflected at the level of abstraction of the model.

III. CHAINED MULTIPLY-ADD

Fused multiply-add is a single floating-point instruction of
three arguments that combines addition and multiplication to
compute A ∗B +C, rounding only after the full computation
has completed. Chained multiply-add is a single instruction
that is functionally equivalent to a sequence of two distinct
instructions, rounding after the multiplication and again after
the addition. The main advantage of FMA is the improved
accuracy that results from the elimination of the intermediate
rounding of the product, especially in the case of an effective
subtraction when the product and the addend are comparable
in magnitude. A disadvantage is the increased widths of the
shifters and adders that are required to accommodate the
double-width unrounded product. Since the two instructions
have identical issue bandwidth, there is no appreciable differ-
ence in performance.

Arm GPUs currently use a single-precision FMA for most
graphics applications. Experiments have shown, however, that
minor variations in rendered images are invisible to the human
eye, and therefore, the benefit of higher accuracy relative to
a CMA is outweighted by considerations of area and power
consumption, which are high priorities in graphics processing.
Thus, we have undertaken a research effort to determine the
viability of replacing this FMA with a CMA in future Arm
graphics processors, focusing on the potential benefits with
respect to area, power, and performance that may be achieved
through reduction in hardware.

Our starting point is a legacy RTL module that shares
hardware among a variety of operations including single- and
half-precision floating-point addition, multiplication, and FMA

with full support for subnormals and IEEE rounding, as well
an integer dot product that combines 4 8×8-bit multiplications.
The proposed design has been derived as a simplification
of this module that replaces FMA with CMA. Note that
our GPUs, unlike CPUs, are not subject to the architectural
constraints imposed by IEEE-754. Thus, our CMA flushes
subnormal parameters to zero and does not report exceptions
(although an invalid multiplication or addition is encoded in a
NaN payload). Both roundings are limited to the default IEEE
rounding mode, “round-to-nearest-even”.

We have extracted a RAC model of this simplified design
that splits its functionality into three separate modules. This
produces an expanded model with some redundant code, but
it clarifies the design and simplifies the analysis, with no
appreciable effect on the complexity of the equivalence check.
We shall focus on the single-precision CMA component of
the model as represented by the RAC function CMA32, the
pseudocode version of which is displayed in Figure 4.1 The
first argument of this function selects one of three operations
corresponding to the values FADD, FMUL, and CMA of the
enumeration type OP. The remaining three arguments are 32-
bit single-precision operands, a, b, and c, the third of which
is used only in the CMA case. The returned value is a single-
precision encoding of the result.

Correctness of CMA32 is defined by formal high-level
behavioral specifications of the FMUL and FADD operations,
fmul32spec and fadd32spec, coded directly in ACL2. Each of
these operates on two arguments and returns a single value,
all of which are 32-bit SP encodings. The specification of the
ternary CMA operation is simply the composition

cma32spec(a, b, c) = fadd32spec(fmul32spec(a, b), c).

These functions must handle the special cases of NaN, infinity,
and subnormal operands, as well as overflow and underflow.
They are much simpler, however, than the standard specifica-
tions of CPU operations presented in [11, Chap. 14], since all
subnormal inputs and outputs are flushed to zero, only one
rounding mode is supported, and the GPU does not generate
exceptions.

In our ACL2 theory of floating-point arithmetic, the bit
vector representations of rational numbers with respect to a
given format are defined by decoding and encoding functions.
Thus, if x is a single-precision encoding of a rational r, then
r = decode(x,SP) and x = encode(r,SP). A rounding mode
is formulated as a function that computes an approximation
of a given number with a given number of bits of precision.
In particular, the result of rounding r to n bits according to
the round-to-nearest-even mode is computed as RNE (r, n).
Our instruction specifications are defined in terms of these
functions. For example, if a and b are normal SP encodings
and the sum of their values is also within the normal range,
then the value of fadd32spec(a, b) is

encode(RNE (decode(a,SP) + decode(b,SP), 24),SP).

1The corresponding FMA module is documented in [11, Chap. 22], and its
RAC model may be found at https://go.sn.pub/fma32.

ui32 CMA32(OP op, ui32 a, ui32 b, ui32 c) {
// Flush subnormals to 0:
if (a[30:23] == 0) a[22:0] = 0;
if (b[30:23] == 0) b[22:0] = 0;
if (c[30:23] == 0) c[22:0] = 0;
// Special cases:
if (isNaN32(a) || isNaN32(b) || op == CMA && isNaN32(c) ||

isZero32(a) || isZero32(b) ||
op == FADD && a[31] != b[31] && a[30:0] == b[30:0]) {

return specialCase(op, a, b, c);
}
else {
// Multiplication:
bool pSign;
ui8 pExp;
ui25 pMant;
ui2 pInc = 0;
if (op == FADD) {

// FADD bypasses the multiplier and converts a
// to the format of the multiplier outputs:
pSign = a[31];
pExp = a[30:23];
pMant = a[22:0];
pMant[23] = 1;
pInc[0] = 0;

}
else {

<pSign, pExp, pMant, pInc> = mulSP(a, b);
}
// Addition and rounding:
if (op == CMA && isZero32(c) || op == FMUL) {

// In this case, the adder is bypassed and the
// result is derived from the multiplier outputs:
ui32 sideRes = sidePath(pSign, pExp, pMant, pInc);
if (op == CMA && isZero32(sideRes)) {
sideRes[31] = sideRes[31] && c[31];

}
return sideRes;

}
else {

ui32 addend = op == FADD ? b : c;
return addSP(addend, pSign, pExp, pMant, pInc);

}
}

}

Fig. 4. CMA32

Execution of CMA32 begins with the flushing of subnormal
operands. Several trivial cases are handled specially and will
be ignored here: (1) a NaN operand, (2) a or b zero, and
(3) FADD with opposite infinities or a zero sum. The main
computation is performed by the multiplier and the adder,
mulSP and addSP. In the FADD case, mulSP is bypassed and
the summands are passed directly to addSP. In the case of
FMUL, or CMA with a zero addend, the adder is bypassed
and the result is derived from the multiplier output by the
function sidePath of Figure 5.

The multiplier computes the 24× 24-bit product of the
significands of a and b. In the original FMA, the imple-
mentation of this computation is deferred to synthesis. Since
hardware is shared by operations on several data types, a
consequence of that choice is that smaller data (11-bit half-
precision significands and 8-bit integers) are padded or sign-
extended to 24 bits in order to share one large multiplier. In
the CMA version, an explicitly coded multiplier sub-array is
designed to assemble the 48-bit single-precision product by
combining the outputs of a set of narrow multipliers applied
to segments of the operands. The benefit of this technique is
that the same multipliers may be efficiently applied directly to

ui32 sidePath(bool pSign, ui8 pExp, ui25 pMant, ui2 pInc) {
ui32 res = 0;
res[31] = pSign;
if (pExp == 0 && !pMant[24]) {
if (pMant[22:0] == 0x7FFFFF) {
res[23] = 1;

}
}
else if (pExp == 0xFF ||

pExp == 0xFE && pMant[24] ||
pExp == 0xFE && pMant[22:0] == 0x7FFFFF

&& pInc[0]) {
res[30:0] = 0x7F800000;

}
else if (pMant[24]) {
res[30:23] = pExp + 1;
res[22:0] = pMant[23:1];
res += pInc[1];

}
else {
res[30:23] = pExp;
res[22:0] = pMant[22:0];
res += pInc[0];

}
return res;

}

Fig. 5. Computation of the rounded product

the smaller data types, providing improvements in timing and
area.

The crux of the CMA design is the interface between mulSP
and addSP. The rounding of the product is not performed by
mulSP, which instead produces an implicit representation of
the rounded product, consisting of four components: pSign,
pExp[7:0], pMant[24:0], and pInc[1:0]. The first two of these
values are the sign and biased exponent of the unrounded
product. Underflow and overflow are indicated by the two
extreme values of pExp. In the normal case, pMant consists
of the leading 25 bits of the 48-bit product of the significands,
and therefore, either pMant[24] = 1 or pMant[23] = 1. If
pMant[24] = 0, then pInc[0] is the rounding increment, to
be added to pMant; if pMant[24] = 1, then pInc[1] is the
rounding increment, to be added to pMant[24:1], and pMant[0]
is ignored. In the multiplier bypass case, pSign, pExp, and
pMant are simply extracted from a, and since no rounding is
required and pMant[24] = 0, the rounding increment pInc[0]
is set to 0.

Since the function sidePath derives the encoded product
from the multiplier outputs, its definition is a precise formu-
lation of the product representation scheme and is therefore
the basis of the statement of correctness of the multiplier. The
following is an informal version of the formal statement that
has been proved by ACL2:

Lemma 1: If op 6= FADD , then

sidePath(pSign, pExp, pMant , pInc) = fmul32spec(a, b).

The adder performs the shift required to align the product
with the addend and computes the sum of the product, addend,
and rounding increment. The result is the same as if the
rounding were performed before the addition, but with the aid
of a half-adder applied to the three summands, only one carry-
propagate addition is required. Moreover, in contrast to the 52-
bit adder used in the original FMA design, the width of the

adder is reduced to 30 bits. In addition to the savings in area
and power, the latency of the operation is thereby decreased
from 4 cycles to 3.

Rounding of the sum is implemented through the use of
an auxiliary mode known as “round-to-odd” [4], [11], [13]:
RTO(r, n) is computed by truncating r to n bits and setting
the least significant bit in the event that it is 0 and the result
is inexact. As documented in [11, Sec. 6.4], the ACL2 RTL
library contains a number of properties of this mode that
account for its utility in the implementation of floating-point
addition, including the following:

If n > m+ 1, then RNE (RTO(r, n),m) = RNE (r,m).

Appealing to this result, addSP applies RTO in an intermediate
rounding of the sum (by appending a sticky bit) before the final
rounding to 24 bits is computed by RNE.

The behavior of addSP in the CMA case is characterized by
the following:

Lemma 2: Assume op = CMA and c is nonzero. Let

p = sidePath(pSign, pExp, pMant , pInc).

Then

addSP(c, pSign, pExp, pMant , pInc) = fadd32spec(c, p).

In the FADD case, the same result holds with p and c replaced
with a and b. Overall correctness of the module follows easily
from the lemmas stated above.

Establishing the appropriate level of detail of the RAC
model involved some experimentation. The equivalence check
did not converge until the RTL multiplier sub-array was accu-
rately modeled at the bit level. We also found it necessary for
the function addSP to adhere to the structure of the RTL adder,
including the rounding process. Convergence also required
decomposition of the check by means of explicit intermediate
maps between the inputs of addSP and the corresponding
RTL signals. On the other hand, several critical optimization
techniques employed in the RTL are not reflected in the
model. These include an explicitly code Han-Carlson adder
[11, Sec. 8.2] and a sophisticated leading zero anticipator [11,
Sec. 8.3]. In the verification of similar double-precision adders,
we have found it necessary to model such features in detail,
but in this single-precision case, they were eliminated from
the model without sacrificing convergence. This resulted in a
minor increase in the SLEC run-time, but simplified the model
and significantly eased the burden on ACL2. The final model
consists of 36 kilobytes of code, 1/6 of the 216 kilobytes of
Verilog source.

IV. CONCLUSION

As for all projects of this sort in our experience, verification
of the chained multiply-add module involved two significant
efforts: design of the RAC model and development of the
correctness proof, each of which occupied one of the authors
for several weeks. The modeling effort required a detailed
study of the RTL in consultation with the designers. Once the
design was understood, coding the model was straightforward,

although some debugging with SLEC was necessary. The
proof effort, as usual, began with an informal but mathemat-
ically rigorous hand-written proof based on previously estab-
lished properties of the underlying algorithms and techniques.
This was interactively transformed into a sequence of ACL2
lemmas, which, in combination with the ACL2 RTL library,
led to a general correctness theorem. The final ACL2 proof
script consists of 64 definitions and 506 lemmas.

Owing to the close correspondence between the model and
the RTL, the development of the SLEC script that guides
the equivalence check was a much simpler task, utilizing
only the most basic features of the tool. After an initial run
failed, we inserted the intermediate maps at the multiplier-
adder interface, which were suggested by previous experience
with similar designs. The check succeeded with no further
guidance.

The SLEC and ACL2 scripts are executed independently.
We run SLEC on Arm clusters via LSF, and ACL2 on an Apple
laptop. The equivalence check runs in 19 minutes, while the
ACL2 proof takes 2 minutes. We note that a more conventional
attempt, using a commercial model checker, to establish the
correctness of the multiplier sub-array, a small component of
the design, ran for 24 hours without success.

TABLE I
AREA AND POWER REDUCTIONS WHEN REPLACING FMA WITH CMA

CMA CMA with
multiplier sub-array

Area reduction 18% 24%
Dynamic power reduction 21% 15%
Leakage power reduction 18% 23%

Total power reduction 20% 18%

The baseline FMA module consists of 4 SP FMA pipelines,
8 HP FMA pipelines, and 16 8-bit integer multiplication
pipelines. It is replicated 128 times per core and accounts for
13% of the core’s area and 7% of its power consumption.
The test CMA module is similarly structured, with the 4-
cycle SP pipeline reduced to 3 cycles. The results of our
experiment are summarized in Table I. An initial version of
the CMA, prior to the implementation of the multiplier sub-
array, exhibited savings of 18% in area in 20% in power. With
the sub-array, area was further reduced, but a small increase
in power was observed. The reason for this is that total power
consumption comprises dynamic power, which is a function of
switching activity, and leakage power, which is determined by
the number and structure of the gates. Since leakage power
is proportional to area, we see a further improvement in
that component with the introduction of the sub-array. On
the other hand, since the sub-array combines SP and HP
logic to save area, a benchmark that runs HP applications
can cause switching activity in SP logic, resulting in higher
dynamic power and a slight increase in total power. Given the
importance of area in this context, the overall effect of the
sub-array is clearly beneficial. Moreover, the applicability of
the experiment to future implementations is ensured by our

verification results.

REFERENCES

[1] S. Boldo and G. Melquiond, “Flocq: A unified library for proving
floating-point algorithms in Coq,” in 20th IEEE Symposium on Computer
Arithmetic, Tubingen, Germany, July 2011, pp. 243–252.

[2] M. Daumas, L. Rideau, and L. Thery, “A generic library for floating-
point numbers and its application to exact computing,” in Theorem
Proving in Higher Order Logics, Lecture Notes in Computer Science,
Heidelberg, Germany, 2001, pp. 169–184.

[3] J. Harrison, “A machine-checked theory of floating point arithmetic,”
in 12th International Conference on Theorem Proving in Higher Order
Logics, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, , and L. Thery,
Eds., Nice, France, 1999, pp. 113–130.

[4] J. S. Moore, T. Lynch, and M. Kaufmann, “A mechanically checked
proof of the correctness of the kernel of the AMD5K86 floating point
division algorithm,” IEEE Transactions on Computers, vol. 47, no. 9,
September 1998.

[5] D. M. Russinoff, “A mechanically checked proof of IEEE compliance
of the AMD-K7 floating point multiplication, division, and square root
instructions,” London Mathematical Society Journal of Computation

and Mathematics, vol. 1, pp. 148–200, December 1998, available at
http://www.russinoff.com/papers/k7-div-sqrt.html.

[6] D. Russinoff, M. Kaufmann, E. Smith, and R. Sumners, “Formal
verification of floating-point RTL at AMD using the ACL2 theorem
prover,” in 17th IMACS World Conference: Scientific Computation,
Applied Mathematics and Simulation, Paris, France, 2005.

[7] W. Hunt, S. Swords, J. Davis, and A. Slobodova, “Use of formal
verification at Centaur Technology,” in Design and Verification of
Microprocessor Systems for High-Assurance Applications, D. Hardin,
Ed. Springer, 2010, pp. 65–88.

[8] ACL2 Web site, https://www.cs.utexas.edu/users/moore/acl2/.
[9] Mentor Graphics Corp. Algorithmic C datatypes. [Online]. Available:

https://www.mentor.com/hls-lp/downloads/ac-datatypes
[10] ——. Sequential Logic Equivalence Checker. [Online]. Available:

https://www.mentor.com/products/fv/questa-slec
[11] D. M. Russinoff, Formal Verification of Floating-Point Hardware design:

A Mathematical Approach, 2nd ed. Springer, 2022.
[12] J. Levine, Flex and Bison. Oreilly Media, 2009.
[13] S. Boldo and G. Melquiond, “Emulation of a FMA and correctly rounded

sums: Proved algorithms using rounding to odd,” IEEE Transactions on
Computers, May 2008.

