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Previous formulations of group theory in ACL2 and Nqthm, based on either encapsulate or defn-
sk, have been limited by their failure to provide a path to proof by induction on the order of a group,
which is required for most interesting results in this domain beyond Lagrange’s Theorem (asserting
the divisibility of the order of a group by that of a subgroup). We describe an alternative approach
to finite group theory that remedies this deficiency, based on an explicit representation of a group
as an operation table. We define a defgroup macro for generating parametrized families of groups,
which we apply to the additive and multiplicative groups of integers modulo n, the symmetric groups,
arbitrary quotient groups, and cyclic subgroups. In addition to a proof of Lagrange’s Theorem, we
provide an inductive proof a theorem of Cauchy: If the order of a group G is divisible by a prime p,
then G has an element of order p.

1 Introduction

Since ACL2 provides only limited support for quantification, modeling group theory in its logic is a chal-
lenging problem. A 1990 paper of Yuan Yu [7] presents a formal development of finite group theory in
Nqthm based on the defn-sk macro (surviving in ACL2 as defun-sk), which he uses to define a pred-
icate that characterizes a list whose members satisfy the group axioms with respect to a fixed operation.
He also defines the notion of group homomorphism and proves that the kernel of any homomorphism is
a normal subgroup, but this requires an additional defn-sk form in order to introduce a group with a
different operation. The culmination of Yu’s work is Lagrange’s Theorem: The order of a finite group is
divisible by the order of any subgroup. Any significant further development of the theory would require
induction on the order of a group, which seems to be inaccessible through this method.

We are unaware of any ACL2 results in this domain that duplicate Yu’s achievement. A similar
approach based on encapsulate has been suggested [6], but while this provides a generalization to
infinite groups, it otherwise shares the same limitations as the defun-sk method. Heras et al. [3] describe
”a guideline to develop tools that simplify the formalizations related to algebraic structures in ACL2”,
but do not mention any results that are directly relevant to the theory of groups.

We shall present an ACL2 formalization of finite groups that provides for inductive proofs as well
as computations on concrete groups. Our scheme is based on the definition of a group as an explicit
operation table, i.e., a matrix of group elements. We define a defgroup macro that provides definitions
of parametrized families of groups, which we apply to the additive and multiplicative groups of integers
modulo n, the symmetric and alternating groups, arbitrary quotient groups, and cyclic subgroups. Our
proof of Lagrange’s theorem shares some features with Yu’s, but we prove a stronger version stating that
the order of a group is the product of that of a subgroup and its index. This leads naturally into an analysis
of quotient groups, which lays the groundwork for a theorem of Cauchy: If the order of a group G is
divisible by a prime p, then G has an element of order p. We provide an inductive proof of this result,
which illustrates the effectuality of our scheme. The proof uses several number-theoretic results from
books/projects/quadratic-reciprocity/euclid.lisp, including the following basic theorem
of Euclid: If a product of integers ab is divisible by a prime p, then p divides either a or b.
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2 Groups and Subgroups
In our formalization, a group is a square matrix, the first row of which is a list of the group elements:
(defmacro elts (g) ‘(car ,g))

(defmacro in (x g) ‘(member-equal ,x (elts ,g)))

(defmacro order (g) ‘(len (elts ,g)))

The index of a group element is its position in the list (elts g):
(defun index (x l)

(if (consp l)

(if (member-equal x (car l))

0

(1+ (index x (cdr l))))

()))

(defmacro ind (x g) ‘(index x (elts g)))

The group operation is defined as a table access:
(defun op (x y g) (nth (ind y g) (nth (ind x g) g)))

We also define
(defmacro e (g) ‘(car (elts ,g)))

Note that (nth (ind (e g) g) g) = (nth 0 g) = (elts g) and therefore,

(op (e g) y g) = (nth (ind y g) (elts g)) = y

i.e., (e g) is a left identity:
(defthm group-left-identity

(implies (in x g) (equal (op (e g) x g) x)))

The left inverse (inv x g), if it exists, is the group element of least index satisfying

(op (inv x g) x g) = x

defined as follows:
(defun inv-aux (x l g)

(if (consp l)

(if (equal (op (car l) x g) (e g))

(car l)

(inv-aux x (cdr l) g))

()))

(defun inv (x g) (inv-aux x (elts g) g))

The definition of a group is based on a set of predicates, including those representing the group axioms:
(defund groupp (g)

(and (posp (order g))

(matrixp g (order g) (order g))

(dlistp (elts g))

(not (in () g))

(closedp g)

(assocp g)

(inversesp g)))

The predicate matrixp is a straightforward characterization of a matrix of given dimensions, and dlist
recognizes lists of distinct members. The condition that NIL is not a group element is unnecessary but
avoids certain technical difficulties. The definition of closedp recursively searches for a a pair of group
elements x and y such that (op x y g) is not in the group. This allows us to prove the theorem
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(defthm group-closure

(implies (and (groupp g) (in x g) (in y g))

(in (op x y g) g)))

and also provides a counterexample if the search succeeds:

(defthm not-closedp-cex

(implies (and (dlistp (elts g)) (not (closedp g)))

(let* ((cex (closedp-cex g)) (x (car cex)) (y (cadr cex)))

(and (in x g) (in y g)

(not (in (op x y g) g))))))

The latter result is useful in verifying (closedp g) for a conjectured group g. An analogous pair of
theorems is derived for assocp, which searches for a triple that violates associativity, and inversesp,
which searches for an element without a left inverse. Other basic properties, e.g., right identity, right
inverse, and cancellation laws, follow easily.

Similarly, subgroups are defined by the predicate

(defun subgroupp (h g)

(and (groupp g)

(groupp h)

(sublistp (elts h) (elts g))

(not (subgroupp-cex h g))))

where subgroupp-cex exhaustively searches for a pair of elements of h on which the two group opera-
tions disagree. Thus,

(defthm subgroup-op

(implies (and (subgroupp h g) (in x h) (in y h))

(equal (op x y h) (op x y g))))

Again, the search produces a counter-example if it exists:

(defthm not-subgroupp-cex

(implies (and (groupp g) (groupp h)

(sublistp (elts h) (elts g))

(not (subgroupp h g)))

(let* ((cex (subgroupp-cex h g)) (x (car cex)) (y (cadr cex)))

(and (in x h) (in y h)

(not (equal (op x y h) (op x y g)))))))

The following results are also readily derived from the definition:

(defthm subgroup-e

(implies (subgroupp h g) (equal (e h) (e g))))

(defthm subgroup-inv

(implies (and (subgroupp h g) (in x h))

(equal (inv x h) (inv x g))))

We also define a function subgroup, which constructs the subgroup of a given group with a given
element list if such a group exists. An illustration will be provided in the next section.

3 Parametrized Groups
The macro defgroup is based on the following encapsulation, which constrains three functions repre-
senting the list of elements of a group, the group operation, and its inverse operator:
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(encapsulate (((glist) => *) ((gop * *) => *) ((ginv *) => *))

(local (defun glist () (list 0)))

(local (defun gop (x y) (+ x y)))

(local (defun ginv (x) x))

(defthm consp-glist (consp (glist)))

(defthm dlistp-glist (dlistp (glist)))

(defthm g-non-nil (not (member-equal () (glist))))

(defthm g-identity

(implies (member-equal x (glist))

(equal (gop (car (glist)) x) x)))

(defthm g-closed

(implies (and (member-equal x (glist))

(member-equal y (glist)))

(member-equal (gop x y) (glist))))

(defthm g-assoc

(implies (and (member-equal x (glist))

(member-equal y (glist))

(member-equal z (glist)))

(equal (gop x (gop y z)) (gop (gop x y) z))))

(defthm g-inverse

(implies (member-equal x (glist))

(and (member-equal (ginv x) (glist))

(equal (gop (ginv x) x) (car (glist)))))))

Our definition of the group (g) is based on the constrained functions gop and glist:

(defun g-row (x m)

(if (consp m)

(cons (gop x (car m))

(g-row x (cdr m)))

()))

(defun g-aux (l m)

(if (consp l)

(cons (g-row (car l) m)

(g-aux (cdr l) m))

()))

(defun g () (let ((l (glist))) (g-aux l l)))

Using the results discussed in Section 2, we prove the theorem

(defthm groupp-g (groupp (g)))

along with three results characterizing the group structure:

(defthm glist-elts (equal (elts (g)) (glist)))

(defthm op-g-rewrite

(implies (and (in x (g)) (in y (g)))

(equal (op x y (g)) (gop x y))))

(defthmd inv-g-rewrite (implies (in x (g)) (equal (inv x (g)) (ginv x))))

The macro defines a parametrized family of groups given a parameter list, a predicate that the parameters
must satisfy, and three terms corresponding to the above constrained functions. For example, the additive
group of integers modulo n is generated by the following:

(defun ninit (n) (if (zp n) () (append (ninit (1- n)) (list (1- n)))))

(defun z+-op (x y n) (mod (+ x y) n))

(defun z+-inv (x n) (mod (- x) n))
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(defgroup z+ (n)

(posp n)

(ninit n)

(z+-op x y)

(z+-inv x))

Prior to the evaluation of a defgroup form, a set of preliminary lemmas corresponding to the seven
exported theorems of the encapsulation must be proved. The first three, which state that the specified
list of elements is a non-NIL list of distinct non-NIL members, are generally trivial. In this case, the
remaining four are also easy to prove:
(defthm z+-identity

(implies (and (posp n) (member-equal x (ninit n)))

(equal (z+-op 0 x n) x)))

(defthm z+-closed

(implies (and (posp n)

(member-equal x (ninit n))

(member-equal y (ninit n)))

(member-equal (z+-op x y n) (ninit n))))

(defthm z+-assoc

(implies (and (posp n)

(member-equal x (ninit n))

(member-equal y (ninit n))

(member-equal z (ninit n)))

(equal (z+-op x (z+-op y z n) n)

(z+-op (z+-op x y n) z n))))

(defthm z+-inverse

(implies (and (posp n) (member-equal x (ninit n)))

(and (member-equal (z+-inv x n) (ninit n))

(equal (z+-op (z+-inv x n) x n) 0))))

The family (z+ n) is then defined by the above defgroup form, which also automatically proves
four theorems:
(DEFTHM GROUPP-Z+ (IMPLIES (POSP N) (GROUPP (Z+ N))))

(DEFTHM Z+-ELTS (IMPLIES (POSP N) (EQUAL (ELTS (Z+ N)) (NINIT N))))

(DEFTHM Z+-OP-REWRITE

(IMPLIES (AND (POSP N) (IN X (Z+ N)) (IN Y (Z+ N)))

(EQUAL (OP X Y (Z+ N)) (Z+-OP X Y N))))

(DEFTHM Z+-INV-REWRITE

(IMPLIES (AND (POSP N) (IN X (Z+ N)))

(EQUAL (INV X (Z+ N)) (Z+-INV X N))))

Each of these results is derived by the same functional instantiation of the corresponding lemma pertain-
ing to the constrained constant g. For example,
(DEFTHM GROUPP-Z+ (IMPLIES (POSP N) (GROUPP (Z+ N)))

:HINTS (("Goal"

:USE ((:FUNCTIONAL-INSTANCE GROUPP-G

(GLIST (LAMBDA NIL (IF (POSP N) (NINIT N) (GLIST))))

(GOP (LAMBDA (X Y) (IF (POSP N) (Z+-OP X Y) (GOP X Y))))

(GINV (LAMBDA (X) (IF (POSP N) (Z+-INV X) (GINV X))))

(G-ROW (LAMBDA (X M) (IF (POSP N) (Z+-ROW X M N) (G-ROW X M))))
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(G-AUX (LAMBDA (L M) (IF (POSP N) (Z+-AUX L M N) (G-AUX L M))))

(G (LAMBDA NIL (IF (POSP N) (Z+ N) (G)))))))))

Note that Z+-ROW and Z+-AUX are auxiliary functions that are generated by defgroup along with Z+.
The multiplicative group (z* n) of integers modulo n is similarly generated, replacing addition with

multiplication:
(defun z*-op (x y n) (mod (* x y) n))

where we assume (and (natp n) (> n 1)). The element list is the sublist (rel-primes n) of
(ninit n) consisting of integers relatively prime to n. This list is computed using the greatest common
divisor function, g-c-d, which is treated in euclid.lisp. It is clear that (car (rel-primes n)) = 1
satisfies the identity property. Closure and associativity follow from the established properties of g-c-d
and mod. For the definition of the inverse operator, we appeal to the following property of g-c-d:
(defthm g-c-d-linear-combination

(implies (and (integerp x) (integerp y))

(= (+ (* (r-int x y) x) (* (s-int x y) y))

(g-c-d x y))))

Thus, (g-c-d x y) is a linear combination of x and y with integer coefficients (r-int x y) and
(s-int x y). We define
(defun z*-inv (x n) (mod (r-int x n) n))

and the required property follows from g-c-d-linear-combination:
(defthm z*-inverse

(implies (and (natp n) (> n 1) (member-equal x (rel-primes n)))

(and (member-equal (z*-inv x n) (rel-primes n))

(equal (z*-op (z*-inv x n) x n) 1))))

Thus, we have
(defgroup z* (n)

(and (natp n) (> n 1))

(rel-primes n)

(z*-op x y n)

(z*-inv x n))

and the usual four generated theorems, including
(DEFTHM GROUPP-Z* (IMPLIES (AND (NATP N) (> N 1)) (GROUPP (Z* N))))

For example, evaluation of (z* 15) yields a group or order 8:
((1 2 4 7 8 11 13 14)

(2 4 8 14 1 7 11 13)

(4 8 1 13 2 14 7 11)

(7 14 13 4 11 2 1 8)

(8 1 2 11 4 13 14 7)

(11 7 14 2 13 1 8 4)

(13 11 7 1 14 8 4 2)

(14 13 11 8 7 4 2 1))

As an illustration of the subgroup function mentioned at the end of Section 2, we observe that
(subgroup ’(1 4 7 13) (z* 15))

is
((1 4 7 13)

(4 1 13 7)

(7 13 4 1)

(13 7 1 4))
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and (subgroupp (subgroup ’(1 4 7 13) (z* 15)) (z* 15)) = T. Note that in order for subgroup
to succeed in generating a group, the first member of the supplied list must be the identity element.

The element list of the symmetric group (sym n) is given by

(defund slist (n) (perms (ninit n)))

where (perms l) returns a list of all permutations of a list l. The group operation is composition,
defined by
(defun comp-perm-aux (p r l)

(if (consp l)

(cons (nth (nth (car l) r) p)

(comp-perm-aux p r (cdr l)))

()))

(defun comp-perm (p r n) (comp-perm-aux p r (ninit n)))

and the inverse operator is
(defun inv-perm-aux (p l)

(if (consp l)

(cons (index (car l) p)

(inv-perm-aux p (cdr l)))

()))

(defun inv-perm (p n) (inv-perm-aux p (ninit n)))

Once we establish the required preliminary lemmas (which has not yet been done at the time of writing),
we shall invoke
(defgroup sym (n)

(posp n)

(slist n)

(comp-perm x y n)

(inv-perm x n))

and obtain
(DEFTHM GROUPP-SYM (IMPLIES (POSP N) (GROUPP (SYM N))))

In the meantime, we have defined a weaker version of defgroup that defines a family of groups without
proving any theorems, and does not require either the parameter constraint or the inverse operator:
(defgroup-light sym (n)

(slist n)

(comp-perm x y n))

This allows us to analyze concrete groups of the family. For example, (sym 3) is a group of order 6,
(((0 1 2) (0 2 1) (1 0 2) (1 2 0) (2 0 1) (2 1 0))

((0 2 1) (0 1 2) (2 0 1) (2 1 0) (1 0 2) (1 2 0))

((1 0 2) (1 2 0) (0 1 2) (0 2 1) (2 1 0) (2 0 1))

((1 2 0) (1 0 2) (2 1 0) (2 0 1) (0 1 2) (0 2 1))

((2 0 1) (2 1 0) (0 2 1) (0 1 2) (1 2 0) (1 0 2))

((2 1 0) (2 0 1) (1 2 0) (1 0 2) (0 2 1) (0 1 2)))

and we can prove
(defthm groupp-sym-3 (groupp (sym 3)))

by direct computation. Note that the identity element of (sym n) is the trivial permutation (ninit n).
To construct the alternating groups, we define a function cyc that converts an element of (sym n)

to an alternative representation as a product of cycles. For example, in (sym 5),
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(cyc ’(2 3 4 1 0)) = ((0 2 4) (1 3)),
We can derive the parity of a permutation from the observation that a cycle of odd (resp., even) length
is a product of an even (resp., odd) number of transpositions. Thus, we define an even permutation as
follows:
(defun even-cyc (cyc)

(if (consp cyc)

(if (evenp (len (car cyc)))

(not (even-cyc (cdr cyc)))

(even-cyc (cdr cyc)))

t))

(defun even-perm (perm) (even-cyc (cyc perm)))

The function even-perms extracts the sublist of even permutations from a list. The alternating group
(alt n) is the subgroup of (sym n) consisting of the even permutations:
(defgroup-light alt (n)

(even-perms (slist n))

(comp-perm x y n))

For example, (alt 3) is the group
(((0 1 2) (1 2 0) (2 0 1))

((1 2 0) (2 0 1) (0 1 2))

((2 0 1) (0 1 2) (1 2 0)))

and we can prove theorems such as (subgroupp (alt 5) (sym 5)).

4 Cosets and Lagrange’s Theorem
For our purposes, we need only consider left cosets. Given an element x and a subgroup h of a group g,
(lcoset x h g) is defined to be a list of all elements of g of the form (op x y g) that satisfy (in
y h). In particular, (lcoset (e g) h g) is a permutation of (elts h). Our definition of lcoset
ensures that this list is ordered by indices with respect to g. It follows that its members are distinct:
(defthm dlistp-lcosets

(implies (and (subgroupp h g) (in x g))

(dlistp (lcoset x h g)))))

It is also easily shown that the length of each coset is the order of the subgroup:
(defthm len-lcoset

(implies (and (subgroupp h g) (in x g))

(equal (len (lcoset x h g)) (order h))))

The following is a useful criterion for coset membership:
(defthmd member-lcoset-iff

(implies (and (subgroupp h g) (in x g) (in y g))

(iff (member-equal y (lcoset x h g))

(in (op (inv x g) y g) h))))

As a consequence of this result, intersecting cosets have the same members, and the following may be
derived from the ordering property:
(defthmd equal-lcoset

(implies (and (subgroupp h g) (in x g) (in y g)

(member-equal y (lcoset x h g)))

(equal (lcoset y h g) (lcoset x h g))))



D.M. Russinoff 9

The list (lcosets h g) is constructed by traversing (elts g) and adding a coset to the list when-
ever an element is encountered that does not already appear in the list. By definition, the length of the
list is the index of h in g:

(defun subgroup-index (h g) (len (lcosets h g)))

Our proof of Lagrange’s Theorem is based on the list (append-list (lcosets h g)), produced by
appending all members of (lcosets h g). The above results lead to the following properties of this
list:
(defthm dlistp-append-list-lcosets

(implies (subgroupp h g)

(dlistp (append-list (lcosets h g)))))

(defthm len-lcosets

(implies (subgroupp h g)

(equal (len (append-list (lcosets h g)))

(* (order h) (subgroup-index h g)))))

The proof of Lagrange’s Theorem depends on the observation that if each of two lists of distinct members
is a sublist of the other, then the lists have the same length:
(defthmd sublistp-equal-len

(implies (and (dlistp l)

(dlistp m)

(sublistp l m)

(sublistp m l))

(equal (len l) (len m))))

The hypotheses of this lemma are readily established for the lists (append-list (lcosets h g)) and
(elts g), and the theorem follows:
(defthm lagrange

(implies (and (groupp g) (subgroupp h g))

(equal (* (order h) (subgroup-index h g))

(order g))))

5 Normal Subgroups and Quotient Groups
For elements x and y of a group g, the conjugate of x by y is defined by
(defund conj (x y g) (op (op (inv y g) x g) y g))

Note that this computation returns x iff x and y commute:
(defthmd conj-commute

(implies (and (groupp g) (in x g) (in y g))

(iff (equal (conj x y g) x)

(equal (op x y g) (op y x g)))))

A normal subgroup h of g is recognized by the predicate (normalp h g), which first requires that h be
a subgroup of g and then exhaustively checks that every conjugate of every element of h is an element of
h. As usual, we have the following two results:
(defthm normalp-conj

(implies (and (normalp h g) (in x h) (in y g))

(in (conj x y g) h)))

(defthmd not-normalp-cex

(let* ((cex (normalp-cex h g)) (x (car cex)) (y (cadr cex)))

(implies (and (subgroupp h g) (not (normalp h g)))

(and (in x h) (in y g) (not (in (conj x y g) h))))))
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We shall apply defgroup to define the group (quotient g h) when h is a normal subgroup of g.
The elements of this group are the members of (lcosets h g), and the identity element is the coset of
(e g):

(defun qe (h g) (lcoset (e g) h g))

Thus, we must rearrange (lcosets h g), moving this element to the front of the list:

(defun qlist (h g) (cons (qe h g) (remove1 (qe h g) (lcosets h g))))

The group operation is

(defun qop (x y h g) (lcoset (op (car x) (car y) g) h g))

and the inverse operator is

(defun qinv (x h g) (lcoset (inv (car x) g) h g))

The closure property is trivial:

(defthm q-closed

(implies (and (normalp h g)

(member-equal x (qlist h g))

(member-equal y (qlist h g)))

(member-equal (qop x y h g) (qlist h g))))

The remaining properties required by defgroup depend on the following result, which is a consequence
of normalp-conj and member-lcoset-iff:

(defthm op-qop

(implies (and (normalp h g)

(member-equal x (qlist h g)) (member-equal y (qlist h g))

(member-equal a x) (member-equal b y))

(member-equal (op a b g) (qop x y h g))))

The required properties follow easily:

(defthm q-identity

(implies (and (normalp h g) (member-equal x (qlist h g)))

(equal (qop (qe h g) x h g) x)))

(defthm q-assoc

(implies (and (normalp h g)

(member-equal x (qlist h g))

(member-equal y (qlist h g))

(member-equal z (qlist h g)))

(equal (qop x (qop y z h g) h g)

(qop (qop x y h g) z h g))))

(defthm q-inverse

(implies (and (normalp h g) (member-equal x (qlist h g)))

(and (member-equal (qinv x h g) (qlist h g))

(equal (qop (qinv x h g) x h g) (qe h g)))))

We may now invoke

(defgroup quotient (g h)

(normalp h g)

(qlist h g)

(qop x y h g)

(qinv x h g))

which generates four results:
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(DEFTHM GROUPP-QUOTIENT (IMPLIES (NORMALP H G) (GROUPP (QUOTIENT H G))))

(DEFTHM QUOTIENT-ELTS

(IMPLIES (NORMALP H G) (EQUAL (ELTS (QUOTIENT H G)) (LCOSETS H G))))

(DEFTHM QUOTIENT-OP-REWRITE

(IMPLIES (AND (NORMALP H G) (IN X G) (IN Y G))

(EQUAL (OP X Y (QUOTIENT H G)) (LCOSET (OP (CAR X) (CAR Y) G) H G))))

(DEFTHM QUOTIENT-INV-REWRITE

(IMPLIES (AND (NORMALP H G) (IN X G))

(EQUAL (INV X (QUOTIENT H G)) (QINV X H G))))

It is easily shown that any subgroup of index 2 is normal. For example, by direct computation,

(normalp (alt 5) (sym 5)) = T.

As another example, the element (1 2 0) of (sym 3) generates a subgroup of order 3 in a group of
order 6, and therefore,

(normalp (subgroup ’((0 1 2) (1 2 0) (2 0 1)) (sym 3))) = T.

According to GROUPP-QUOTIENT, its quotient group

(quotient (sym 3) (subgroup ’((0 1 2) (1 2 0) (2 0 1)) (sym 3)))

is a group of order 2:

((((0 1 2) (1 2 0) (2 0 1)) ((0 2 1) (1 0 2) (2 1 0)))

(((0 2 1) (1 0 2) (2 1 0)) ((0 1 2) (1 2 0) (2 0 1))))

In the analysis of quotient groups, especially quotients of large groups, it is convenient to rename the
group elements by replacing each coset with its car. This renaming is performed by the function quot.
Thus,

(quot (sym 3) (subgroup ’((0 1 2) (1 2 0) (2 0 1)) (sym 3)))

is

(((0 1 2) (0 2 1))

((0 2 1) (0 1 2)))

Of course, any subgroup of an abelian group is normal. For example, (subgroup ’(1 3 9) (z* 13))
is a normal subgroup of (z* 13) of index 4. Its quotient group is

(((1 3 9) (2 5 6) (7 8 11) (4 10 12))

((2 5 6) (4 10 12) (1 3 9) (7 8 11))

((7 8 11) (1 3 9) (4 10 12) (2 5 6))

((4 10 12) (7 8 11) (2 5 6) (1 3 9)))

and the renamed group (quot (z* 13) (subgroup ’(1 3 9) (z* 13))) is

((1 2 7 4)

(2 4 1 7)

(7 1 4 2)

(4 7 2 1))
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6 Cyclic Subgroups
The powers of an element a of a group g are defined by

(defun power (a n g)

(if (zp n)

(e g)

(op a (power a (1- n) g) g)))

The usual formulas for a product of powers and a power of a power are derived by induction:

(defthm power+

(implies (and (groupp g) (in a g) (natp n) (natp m))

(equal (op (power a n g) (power a m g) g)

(power a (+ n m) g))))

(defthm power*

(implies (and (groupp g) (in a g) (natp n) (natp m))

(equal (power (power a n g) m g)

(power a (* n m) g))))

We define the order of a in g:

(defun ord-aux (a n g)

(declare (xargs :measure (nfix (- (order g) n))))

(if (equal (power a n g) (e g))

n

(if (and (natp n) (< n (order g)))

(ord-aux a (1+ n) g)

())))

(defun ord (a g) (ord-aux a 1 g))

We cannot have (ord a g) = NIL, for it would then follow from power+ that the powers of a include
(order g)+1 distinct elements. This observation has the following consequences:

(defthm ord<=order

(implies (and (groupp g) (in a g))

(and (posp (ord a g)) (<= (ord a g) (order g)))))

(defthm divides-ord

(implies (and (groupp g) (in a g) (natp n))

(iff (equal (power a n g) (e g))

(divides (ord a g) n))))

(defthm power-mod

(implies (and (groupp g) (in a g) (natp n))

(equal (power a n g) (power a (mod n (ord a g)) g))))

(defthm ord-power-div

(implies (and (groupp g) (in a g) (posp n) (divides n (ord a g)))

(equal (ord (power a n g) g)

(/ (ord a g) n))))

Thus, there are (ord a g) distinct powers of a. A list of these elements is computed by powers:

(defun powers-aux (a n g)

(if (zp n)

()

(append (powers-aux a (1- n) g) (list (power a (1- n) g)))))

(defun powers (a g) (powers-aux a (ord a g) g))

The following are readily derived from the definition:
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(defthm member-powers

(implies (and (groupp g) (in a g)

(natp n) (< n (ord a g)))

(equal (nth n (powers a g))

(power a n g))))

(defthm power-index

(implies (and (groupp g) (in a g)

(member-equal x (powers a g)))

(equal (power a (index x (powers a g)))

x)))

We shall apply defgroup to the list (powers a g). It follows from power-mod that (powers a g) is
closed under the group operation, and associativity is naturally inherited. We define the inverse operator
by

(defun cinv (x a g) (power a (- (ord a g) (index x (powers a g))) g))

Its required property follows from power-index and power+:

(defthm c-inverse

(implies (and (groupp g) (in a g)

(member-equal x (powers a g)))

(and (member-equal (cinv x a g) (powers a g))

(equal (op (cinv x a g) x g) (e g)))))

The other prerequisites of defgroup are trivial. Thus, we have

(defgroup cyclic (a g)

(and (groupp g) (in a g))

(powers a g)

(op x y g)

(cinv x a g))

As a consequence,

(DEFTHM GROUPP-CYCLIC

(IMPLIES (AND (GROUPP G) (IN A G)) (GROUPP (CYCLIC A G))))

Note that the two example subgroups at the end of Section 5 can be computed as cyclic subgroups:

(subgroup ’((0 1 2) (1 2 0) (2 0 1)) (sym 3)) = (cyclic ’(1 2 0) (sym 3))

and

(subgroup ’(1 3 9) (z* 13)) = (cyclic 3 (z* 13)).

As another example, the permutation (1 2 3 4 0) of (sym 5) is of order 5, and its cyclic subgroup

(cyclic ’(1 2 3 4 0) (sym 5))

is

(((0 1 2 3 4) (1 2 3 4 0) (2 3 4 0 1) (3 4 0 1 2) (4 0 1 2 3))

((1 2 3 4 0) (2 3 4 0 1) (3 4 0 1 2) (4 0 1 2 3) (0 1 2 3 4))

((2 3 4 9 1) (3 4 0 1 2) (4 0 1 2 3) (0 1 2 3 4) (1 2 3 4 0))

((3 4 0 1 2) (4 0 1 2 3) (0 1 2 3 4) (1 2 3 4 0) (2 3 4 0 1))

((4 0 1 2 3) (0 1 2 3 4) (1 2 3 4 0) (2 3 4 0 1) (3 4 0 1 2)))
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7 Cauchy’s Theorem

The formulation of Cauchy’s Theorem requires a witness function, which searches a group for an element
of a given order:

(defun elt-of-ord-aux (l p n)

(if (consp l)

(if (= (ord (car l) g) n)

(car l)

(elt-of-ord-aux (cdr l) n g))

()))

(defun elt-of-ord (n g) (elt-of-ord-aux (elts g) n g))

Thus, (elt-of-ord n g) selects an element of g of order n, or returns NIL if none exists:

(defthm elt-of-ord-ord

(implies (and (groupp g) (natp n) (elt-of-ord n g))

(and (in (elt-of-ord n g) g)

(equal (ord (elt-of-ord n g) g)

n))))

(defthm elt-of-ord-ord

(implies (and (groupp g) (natp n) (null (elt-of-ord n g)) (in a g))

(not (= (ord a g) n))))

Here are some simple examples:

• (elt-of-ord 5 (sym 5)) = (1 2 3 4 0);

• (elt-of-ord 22 (z* 23)) = 5, the least primitive root of 23;

• (elt-of-ord (order (z* 35)) (z* 35)) = NIL, since (z* 35) is not cyclic.

The theorem may be stated as follows:

(defthm cauchy

(implies (and (groupp g)

(primep p)

(divides p (order g)))

(and (in (elt-of-ord p g) g)

(equal (ord (elt-of-ord p g) g) p))))

Our proof, which closely adheres to the informal proof presented in [5], consists of two steps, both
involving induction on the order of g. First, it is proved for abelian g, and then it is shown that if g is
nonabelian, then it must have a proper subgroup with order divisible by p. In order to conform to space
limitations, we confine our attention here to the abelian case.

The proof depends critically on a result from euclid.lisp:

(defthm euclid

(implies (and (primep p)

(integerp a)

(integerp b)

(not (divides p a))

(not (divides p b)))

(not (divides p (* a b)))))

If g has no element of order p, then by ord-power-div, it has no element of order divisible by p, and
hence no cyclic subgroup of order divisible by p. Combining lagrange and euclid, we have
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(defthm divides-order-quotient

(implies (and (groupp g)

(primep p)

(divides p (order g))

(not (elt-of-ord p g))

(in a g))

(divides p (order (quotient g (cyclic a g))))))

By QUOTIENT-OP-REWRITE and induction,
(defthm lcoset-power

(implies (and (normalp h g) (in x g) (natp n))

(equal (power (lcoset x h g) n (quotient g h))

(lcoset (power x n g) h g))))

It follows that

(power (lcoset x h g) (ord x g) (quotient g h)) = (lcoset (e g) h g)

where

(lcoset (e g) h g) = (e (quotient g h))

By divides-ord, (ord x g) is divisible by (ord (lcoset x h g) (quotient g h)). Therefore,
if g has no element of order divisible by an integer m, then neither does (quotient g h):
(defthm lift-elt-of-ord

(implies (and (normalp h g)

(posp m)

(elt-of-ord m (quotient g h)))

(elt-of-ord m g)))

Now assume that g is abelian. Then every subgroup of g is abelian and normal. Since the quotient group
of any nontrivial cyclic subgroup of g has a smaller order than g, we have our induction scheme:
(defun cauchy-induction (g)

(declare (xargs :measure (order g)))

(if (and (groupp g)

(abelianp g)

(> (order g) 1))

(cauchy-induction (quotient g (cyclic (cadr (elts g)) g)))

()))

(defthm cauchy-abelian-lemma

(implies (and (groupp g)

(abelianp g)

(primep p)

(divides p (order g)))

(elt-of-ord p g))

:hints (("Goal" :induct (cauchy-induction g))))

In the proof of the above lemma, ACL2 generates a single nontrivial subgoal, the hypothesis of which is
the instantiation of the goal with

(quotient g (cyclic (cadr (elts g)) g))

substituted for g. By divides-order-quotient, the order of this quotient group is divisible by p, and
therefore, by hypothesis, it has an element of order p. The subgoal follows from lift-elt-of-ord.

The final theorem is an immediate consequence of cauchy-abelian-lemma and elt-of-ord-ord:
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(defthm cauchy-abelian

(implies (and (groupp g)

(abelianp g)

(primep p)

(divides p (order g)))

(and (in (elt-of-ord p g) g)

(equal (ord (elt-of-ord p g) g) p))))

8 Conclusion

In 2007, Georges Gonthier et al. [2] embarked on a formalization of finite group theory in Coq, with the
objective of a machine-checked proof of the Feit-Thompson Theorem: All groups of odd order are solv-
able. Six years later, the ultimate success of this undertaking was announced in an Inria Technical Report
[1] listing fifteen coauthors. In light of the experience of our present project, it would be unsurprising to
find that the Inria result did indeed involve some ninety man-years of effort.

The leap in complexity from Cauchy’s Theorem to Feit-Thompson is daunting, but as C. S. Lewis
reminds us, “With the possible exception of the equator, everything begins somewhere.” We may find
further solace in a plan to pursue a direction orthogonal to Inria’s objective of the classification of finite
groups, and better suited to ACL2’s strengths. While not specifically designed for the formalization of
higher mathematics, ACL2 is equipped with sophisticated procedures for managing rational arithmetic
and polynomials. [4] Algebraic number theory, the study of finite extension fields of the rationals and
their Galois groups, could be a fruitful application area founded on a formalization of elementary group
theory. We have already demonstrated that our approach provides group computations in a straightfor-
ward manner, and we may anticipate that the computational power and proof automation of ACL2 can be
brought to bear on the analysis and verification of a variety of number-theoretic algorithms of practical
significance. Clearly, there is much work to be done before such a plan can be more than a fanciful
dream.
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