
Pratt Certification and the Primality of 2255 − 19

David M. Russinoff

December 21, 2015

The theoretical import of Pratt’s method of prime certification [3] is that
for every prime p there is a procedure for establishing its primality with execu-
tion time that is polynomial in log p. As a practical consequence, this enables
straightforward certification of primes that are too large to be checked by ex-
haustive computation. In particular, we shall construct a Pratt certificate for
2255−19, the basis of the Diffie-Hellman function known as Curve25519 [2], that
we have used in the formal verification of its primality. All results presented be-
low are formalized in the mechanically checked proof script books/projects/-
quadratic-reciprocity/pratt of the ACL2 repository.

Definition 1 Let n ∈ Z, n > 1,and r ∈ Z. The order of r modulo n, if it exists,
is the least positive integer m such that rm mod n = 1.

Lemma 1 Let p ∈ Z, p > 1. and let r ∈ Z with order m modulo p. Then for
all k ∈ Z, rk mod n = 1 if and only iff m|k.

Proof: If k = ma, then rk = (rm)a ≡ 1a = 1 (mod n). On the other hand,
suppose k = ma + b, where 0 < b < m. Then

rk = (rm)a
rb ≡ rb (mod n),

and by minimality of m, rb mod n 6= 1. 2

It may be shown that for every prime p there exists an integer of order p− 1
mod p, called a primitive root of p. Here we are interested in the converse of
this statement:

Lemma 2 Let p ∈ Z, p > 1. and r ∈ Z. If the order of r mod p is p− 1, then
p is prime.

Proof: First note that if 1 ≤ j ≤ i < p and rj ≡ ri (mod p), then

ri−j ≡ ri−j
(
rp−1

)j
= rir(p−2)j ≡ rjr(p−2)j =

(
rp−1

)j ≡ 1 (mod p),

and since 0 ≤ i− j < p− 1, where p− 1 is the order of r mod p, we must have
i = j. It follows that

{ri mod p|1 ≤ i < p} = {1, 2, . . . p− 1}.

1

Now suppose 1 ≤ q < p and q|p. Then q|(qp−1 mod p). But for some i, q =
ri mod p, and hence qp−1 mod p ≡

(
ri

)p−1 = r(p−1)i ≡ 1 mod p. It follows that
q|1, and hence q = 1. 2

Thus, to establish primality of p, it suffices to exhibit a primitive root r.
This requires computing rm mod p for large values of m, which can be done
efficiently by binary exponentiation:

Definition 2 If b ∈ Z, e ∈ Z, n ∈ Z, and e ≥ 0, then

BE(b, e, n) = BE′(b, e, n, 1),

where BE′ is defined recursively by

BE′(b, e, n, r) =
{

BE′(b2 mod n, e
2 , n, r) if e is even

BE′(b2 mod n, e−1
2 , n, rb mod n) if e is odd.

Lemma 3 If b ∈ Z, e ∈ Z, n ∈ Z, and e ≥ 0, then BE(b, e, n) = be mod n.

Proof: By induction, if e is even, then

BE′(b, e, n, r) =
(
(b2 mod n)

e
2 r

)
mod n = ber mod n,

and if e is odd, then

BE′(b, e, n, r) =
(
(b2 mod n)

e−1
2 (rb mod n)

)
mod n = ber mod n.

Thus, BE(b, e, n) = BE′(b, e, n, 1) = be mod n. 2

The following result limits the number of exponentiations required to estab-
lish a primitive root.

Lemma 4 Let p ∈ Z, p > 1, and r ∈ Z. If rp−1 mod p = 1 and for every prime
factor q of p− 1, r

p−1
q mod p 6= 1, then p is prime.

Proof: Let m be the order of r mod p. By Lemma 1, m|p − 1, and by
Lemma 2, we need only show that m = p− 1. But if not, then p−1

m has a prime
factor q, which must also be a factor of p − 1, But this implies m|p−1

q , and

therefore r
p−1

q mod p = 1. 2

Thus, given the prime factorization of p − 1 and a primitive root of p, if k
is the number of distinct prime in the factorization, then p may be certified as
a prime by computing k + 1 exponentials and certifying the primality of each
prime factor recursively. This suggests a prime certificate structured as a tree.

Definition 3 Let p ∈ Z, p > 1. A prime certificate for p is a list

(r (q1 . . . qk) (e1 . . . ek) (c1 . . . ck)),

where

2

(1) r is a primitive root of p;

(2) q1, . . . , qk are distinct primes and e1, . . . , ek are positive integers such that
p =

∏k
i=1 qei

i ;

(3) For 1 ≤ i ≤ k, ci is either NIL or a prime certificate for qi.

The intention is that the leaves of the tree, i.e., the primes for which no certificate
is supplied, are small enough to be certified by direct computation. Thus,
according to Lemma 4, the primality of p may be established by verifying a
prime certificate for p as follows:

(1) Check that BE(r, p− 1, p) = 1 and for i = 1, . . . , k, BE(r, p−1
qi

, p) 6= 1.

(2) Check that p =
∏k

i=1 qei
i ;.

(3) For i = 1, . . . , k, if ci = NIL, then verify the primality of qi by exhaustively
checking for divisors; otherwise recursively verify that ci is a certificate for
qi.

To establish the complexity bound mentioned at the beginning of this note,
we argue informally as follows. First, note that the number k of prime factors
of p − 1 is bounded by log2 p. Thus, the number of exponentiations (which
dominate the computation) required at the root node is O(log p). Each of these
involves O(log p) multiplications, and each multiplication has execution time
O(log2 p) (although a better estimate is possible). Thus, the computation at
each internal node is O(log4 p).

It is clear that any prime p admits a certificate in which the prime at each
leaf node is 2. We shall show by induction that the number of internal nodes of
this tree is bounded by 4 log2 p− 4. In the base case, p = 2, this holds trivially:
there are no internal nodes and 4 log2 p − 4 = 0. Suppose p > 2. By inductive
hypothesis, the number of internal nodes is at most

1 +
k∑

i=1

(4log2qi − 4) = 1− 4k + 4 log2

k∏
i=1

qi.

If k ≥ 2, then the claim follows from
∏k

i=1 qi ≤ p. But if k = 1, then p ≥ q2
1 ,

the above bound reduces to

−3 + 4 log2 q1 ≤ −3 + 2 log2 p < −4 + 4 log2 p.

Consequently, the total certification time is O(log5 p).
Of course, the existence of a prime certificate for p does not guarantee that it

can be easily found. This requires producing a prime factorization of p− 1 and
identifying a primitive root of p. Note, however, that our methods for generating
these values need not be trusted, since their correctness will be verified through
the certification process. In order for the method to be effective, it is sufficient
that the values used happen to be correct.

3

Our particular interest in this method is motivated by our investigation
of the Diffie-Hellman key agreement algorithm Curve25519 [4], which requires
establishing the primality of ℘ = 2255−19. For this purpose, we use the following
certificate:

(2
(2 3 65147 74058212732561358302231226437062788676166966415465897661863160754340907)
(2 1 1 1)
(() () ()
(2
(2 3 353 57467 132049 1923133 31757755568855353 75445702479781427272750846543864801)
(1 1 1 1 1 1 1 1)
(() () () () () ()
(10
(2 3 31 107 223 4153 430751)
(3 1 1 1 1 1 1)
(() () () () () () ()))

(7
(2 3 5 75707 72106336199 1919519569386763)
(5 2 2 1 1 1)
(() () () () ()
(2
(2 3 7 19 47 127 8574133)
(1 1 1 1 2 1 1)
(() () () () () () ())))))))))

According to this certificate, 2 is a primitive root of ℘ and ℘−1 has four distinct
prime factors, with corresponding exponents 2, 1, 1, and 1. The first three of
these factors are small enough to be verified by exhaustive computation. The
fourth factor requires its own certificate, which involves eight prime facors, two
of which are large enough to require certificates.

The prime factorizations that appear in this certificate may be computed by
any of the many factorization programs that are accessible on the Web. Each of
the primitive roots was found by a linear search, checking the integers 2, 3, 4, . . .
to find the least value that satisfies the requirements of Lemma 4. There is no
guarantee that this process terminates quickly (little is known about the relative
size of the smallest primitive root of a prime), but experience suggests that it
generally does.

This certificate has been verified through the above process by ACL2, with
a reported execution time less than 0.01 second. Thus, we have a formal proof
of the desired result:

Lemma 5 ℘ = 2255 − 19 is prime.

The Curve25519 algorithm is based on a group operation on the elliptic curve
defined by the equation y2 = x3 + Ax2 + x, where A = 486662, over the Galois
field F℘ of order ℘. In addition to the primality of ℘, our analysis requires
identifying quadratic residues modulo ℘, i.e., integers m ∈ F℘ for which there
exists x ∈ Z satisfying x2 mod ℘ = m. According to a well known result of
Euler, if m is an integer not divisible by a prime p, then

m
p−1
2 mod p =

{
1 if m is a quadratic residue mod p

−1 otherwise.

4

A formalization of Euler’s criterion may be found in the script books/quadrat-
ic-reciprocity/euler in the ACL2 repository. Combining this result with
Lemma 3, we may efficiently compute the quadratic character of an integer
modulo ℘ by binary exponentiation. The following two results have been verified
by direct computation. According to the first of these, the value 9 occurs as the
x-coordinate of a point on the curve:

Proposition 1 93 + A · 92 + 9 is a quadratic residue modulo ℘.

The second implies that the origin is the only point of intersection of the
curve with the x-axis:

Proposition 2 A2 − 4 is not a quadratic residue modulo ℘.

Corollary 1 If (x, 0) ∈ EC, then x = 0.

Proof: (The following operations are in the field F℘.) Suppose x3 + Ax2 +
x = 0 and x 6= 0. Then x2 + Ax + 1 = 0, and hence

A = −x2 + 1
x

,

A− 2 = −x2 + 2x + 1
x

= − (x + 1)2

x
,

A + 2 = −x2 − 2x + 1
x

= − (x− 1)2

x
,

A2 − 4 =
(x + 1)2(x− 1)2

x2
=

(
x2 − 1

x

)2

,

contradicting Proposition 2. 2

References

[1] ACL2 home page, www.cs.utexas.edu/users/moore/acl2/.

[2] Bernstein, Daniel J.: Curve25519: New Diffie-Hellman Speed
Records. In: 9th International Conference on Theory and Prac-
tice of Public Key Cryptography. Springer (2006)

[3] Pratt, Vaughn: Every Prime Has a Succinct Certificate. In: SIAM
Journal on Computing, vol. 4 (1975)

[4] Russinoff, David M.: A Computationally Surveyable Proof
of the Curve25519 Group Axioms. Unpublished manuscript,
www.russinoff.com/papers/group.pdf.

5

