Polynomial Terms and
Sparse Horner Normal Form

David M. Russinoff
July 20, 2017

This note documents an ACL2 [1] formalization of an efficient method of establishing the equality
of two integer polynomials in several variables, adapted from a similar Coq implementation by Gre-
goire and Mahboubi [2]. The associated proof script resides in the directory books/projects/shnf
of the ACL2 repository. The motivation for this exercise is an analysis of the group operation de-
fined on an elliptic curve.[3] The application of this operation to two points on the curve involves
compositions of rational functions of the coordinates of the two points. A proof of associativity
amounts to establishing an identity involving several further compositions of these functions. In
principle, this could be achieved by performing the compositions, reducing to a polynomial equation
by cross-multiplication, expanding the polynomials to sums of monomials, and canceling terms. This
approach, however, is grossly impractical—the number of resulting monomials have been found to
exceed 102°!

The solution to this problem is an efficiently computable representation of polynomials, known as
sparse Horner normal form. Following [2], we define an evaluation function on these normal forms
and prove equality between the value of a polynomial for a given set of variable assignments and
that of its representation. Thus, we may establish the equivalence of two polynomials by observing
that their representations coincide.

Of course, the utility of this procedure rests on the property of completeness: equivalent polyno-
mials necessarily produce the same representation. According to the authors of the Coq proof, which
does not address this property, it cannot even be stated within their formal framework. We shall
present a constructive proof of this result that we have formalized in ACL2, based on a function of
two polynomials that computes a list of variable assignments for which the values of the polynomials
differ, whenever such a list exists.

Our implementation is based on S-expressions. For this purpose, an S-expression is an integer,
a symbol, or an ordered list s = (sg s1 ... s,) of S-expressions. In the last case, the s; are the
members of s, head(s) = sq, and for k € N, we define s) = (s5, ... s,,).

First, we define an encoding of polynomial expressions in the natural way as S-expressions con-
structed from variable symbols, integers, and the symbols +, -, *, and EXPT, which represent the
basic arithmetic operations.

Definition 1 Let V be a list of distinct symbols. A polynomial term over V is any of the following
S-expressions:

(a) An integer;
(b) A member of V;
(c) A list (- x), where x is a polynomial over V;
(d) A list Cop x y), where x and y are polynomials over V and op € {+,-,*};
(d) A list (EXPT x n), where z is polynomial over V and n € N.
T (V) will denote the set of all polynomial terms over V.

For example, the polynomial —z + z3(z + z — 3y) is encoded as

(+ (-2Z) (x (EXPT X 3) (- (+ZX) (x 3.

Informally, we may use a polynomial expression to refer to the S-expression by which it is encoded.
A polynomial term is evaluated in the context of an assignment of values to variables:

Definition 2 An alist for a list of distinct symbols (vg ... vk_1) is a list of the form
A= ((Uo no) e (’Uk,1 nk,l))7
where n; € Z for 0 <1i < k. We shall say that A associates v; with n;.

Definition 3 Let A be an alist for a list of distinct symbols V and let g € T (V).

(a) If g € Z, then evalp(q, A) = q;

(b) If q is a member of V and A associates q with n, then evalp(q, A) = n;

(c) If g = (= 1), then evalp(q, A) = —evalp(r, A);

(d) If g = (+ r), then evalp(q, A) = evalp(r, A) + evalp(s, A);

(e) If g = (= r s), then evalp(q, A) = evalp(r, A) — evalp(s, A);

(f) If g = (x r s), then evalp(q, A) = evalp(r, A) - evalp(s, A);

(9) If ¢ = (EXPT r n), then evalp(q, A) = evalp(r, A)".

We shall define an encoding of polynomial terms as list structures of another sort, constructed
from integers and the two symbols POP and POW:
Definition 4 A sparse Horner form (SHF) is any of the following S-expressions:

(a) An integer;

(b) A list (POP i p), wherei € N and p is a SHF;

(c) A list (PQW i p q), where i € N and p and q are SHFs.

Our objective is to define a function norm that computes a SHF encoding of a polynomial term

f with respect to a variable ordering V = (vg...v;_1), and a function evalh that evaluates a SHF
with respect to a corresponding list of values N = (ng...ng_1), such that

evalh(norm(f, V), N) = evalp(f, A),

where
A = (('UO no) e (’Uk,1 nk,l)).

One possible approach to the definition of norm(f, V) is as follows:
(1) If f is an integer constant, then norm(f,V) = f.

2) Suppose vy occurs in f. Find polynomials g and h such that f = v} - g + h, g is not divisible
0
by vg, and vy does not occur in h. Then

norm(f, V)= (POW ¢ p q),
where p = norm(g, V) and q = norm(h, VV).
(3) Suppose vg does not occur in f. Let v; be the first variable in V' that does occur in f. Then
norm(f,V) = (POP ¢ p),

where p = norm(f,V®),

For example, consider the polynomial
daty? + 323 4+ 221+ 5
with variable ordering (x y z). Rewriting the polynomial as
23 (4xy® 4 3) + (221 4 5),

we find that the normalization is
(POW 3 p q),

where
p = norm(4zy® + 3, (x y 2))
and
q=norm(22* + 5, (y 2)).
Continuing recursively, we arrive at the final result:

(POW 3 (POW 1 (POP 1 (POW 2 4 0)) 3)
(POP 1 (POW 4 2 5))).

The evaluation of SHFSs is defined as follows:

Definition 5 Let h be a SHF and let N be a list of integers.
(a) If h € Z, then evalh(h,N) = h.
(b) If h = (POP i p), then then evalh(h, N) = evalh(p, N®).
(c) If h = (POW i p ¢) and head(N) = n, then evalh(h, N) = n'evalh(p, N) + evalh(q, N().
(d) If h= (POW ¢ p ¢q) and N =(Q), then evalh(h,N) = 0.

It may be instructive to check that the value of the SHF in the above example for the list of values
(1 2 3), for example, and the value of the represented polynomial for the corresponding alist, are
both 207.

It is not difficult to see that a SHF generated by this normalization procedure conforms to the
following restriction:

Definition 6 A sparse Horner normal form (SHNF) is any of the following SHFs:

(a) An integer;

(b) (POP i p), where i >0, and p is a SHNF of the form (POW i ¢q r);

(c) (POW i p @), wherei > 0, and p and q are SHNFs, and p is not of the form (POW j r 0).
‘H denotes the set of all SHNFs.

Unfortunately, this top-down procedure is impractical because of the general difficulty of constructing
the polynomials g and h in Case (2). Our preferred definition will provide a more efficient bottom-up
procedure. We begin with the functions

pop : ZLxH—H

and
pow L X HXxH—H,

which normalize the SHFs (POP i p) and (POW i p q), respectively.

Definition 7 Leti € N and p € H.
(a) If i =0 orp € Z, then pop(i,p) = p.
(b) If p= (POP j @), then pop(i,p) = (POP i+ j ¢q).
(c) Otherwise, pop(i,p) = (POP i p).

Definition 8 Let i e N— {0}, p e H, and g € H.
(a) If p=0, then pow(i,p,q) = pop(1,q).
(b) If p= (POW j r 0), then pow(i,p,q) = (POW i+ j r q).
(¢) Otherwise, pow(i,p,q) = (POW i p q).

The following properties of these functions are immediate consequences of Definitions 5, 7, and 8:
Lemma 1 Ifi € N, p e H, and N is a list of integers, then pop(i,p) € H and
evalh(pop(i,p), N) = evalh((POP i p), N).
Lemma 2 Ifi e N— {0}, pe H, g € H, and N is a list of integers, then pow(i,p,q) € H and
evalh(pow(i,p,q), N) = evalh((POW i p ¢), N).

Suppose we have have computed the SHNFs for polynomial terms x and y. The following function
then computes the SHNF for the term (+ z).

Definition 9 If x € H and y € H, then x G y is defined as follows:

(1) If x € Z, then

(a) yeZ=xDy=x+y.
(b) y=(POP i p) =>x®y= (POP i ®p).
() y=@0W i p Q) =ady=(POW i p 2B q).

(2) Ify€Z, thenx dy=y P x.
(8) If x = (POP ¢ p) and y = (POP j @), then

(a) i=j=z®y=pop(i,pdq).
(b) i>j=ax®y=pop(j, (POP i —j p) ®q).
(c)i<j=a®y=pop(i, (POP j—i q) ®p).

(4) If x = (POP 4 p) andy = (POW j q 1), then

(a) i=1=x®y=((POW j q rHp).
(b)) i>1=>z®y=POW j q r& (POP i—1 p)).

(5) If y=(POP i p) andx = (POW j q 7), thenx ®y =y D x.
(6) If x = (POW ¢ p @) andy = (POW j 7 $), then

(a) i=j=z&y=pow(i,p®r,q®s).
(b)) i>j=z@y=pow(j, POW i—j p 0) ®r,qgPs).
(c)i<j=z®y=pow(i,(POW j—i r 0) ®p,sPDq).

The following is easily proved by induction, as are the analogous properties of negation, multi-
plication, and exponentiation, as defined below.

Lemma 3 Ifx € H, y € H, and N is a list of integers, then x &y € H and
evalh(z ® y, N) = evalh(z, N) + evalh(y, N).

Definition 10 If x € H, then Sx is defined as follows:

(1) If x € Z, then 6z = —x.
(2) If x = (POP i p), then ©x = (POP i ©p).
(8) Ifx=(POW i p @), then©x = (POW ¢ ©p ©¢q).
Lemma 4 If x € H and N is a list of integers, then ©x € ‘H and
evalh(©x, N) = —evalh(x, N).
Definition 11 Ifx € H and y € H, then x ® y is defined as follows:
(1) If x € Z, then

(o) ye Z=z®y=uy.
(b) y= (POP i p) = z®y = pop(i,z @ p).
(c) y=((POW i p @) = xRy = pow(i,xp,x®q).

(2) IfyeZ, thenx@y=y® x.

(8) If = (POP 4 p) andy = (POP j q), then
(a) i=j=x®y=pop(i,p®q).
(b) i>j=x®y=pop(j,(POP i—j p) ®q).
(c)i<j=z®y=pop(i, (POP j —i q) ®p).

(4) If x = (POP ¢ p) andy = (POW j q 7), then

() i=1=2Ry=(POW j 2Qq pRT).
(b)i>1l=>2zy=CF0W j t®q (POP i—1 p) ®r).

(5) If y=(POP ¢ p) andx = (POW j ¢q 1), thenz @y =y @ x.
(6) If : = (POW i p q@) andy = (POW j r), then
r®@y = (pow(i+j,p®r,q®s)® pow(i,p® pop(l,s),0)) ® pow(i,r ® pop(1,q),0).

Lemma 5 Ifz € H, y € H, and N is a list of integers, then x @ y € H and
evalh(z @ y, N) = evalh(z, N) - evalh(y, N).
Definition 12 Ifx € H and k € N, then

T 2 @akt if k> 0.

Lemma 6 Ifx € H, k €N, and N is a list of integers, then x* € H and
evalh(z¥, N) = evalh(z, N)F.
We can now define the normalization procedure:

Definition 13 Let x € T(V), where V. = (vg...vp—1) is a list of distinct symbols.
(a) x € Z = norm(z,V) = x.
(b) x=v;, 0<1i<k= norm(z,V)=pop(i, (POW 1 1 0)).
(¢c) x = (= y) = norm(z,V) = Onorm(y, V).
(d) x = (+ y 2) = norm(x,V) = norm(y,V) ® norm(z,V).
(e) x=(-y 2z) = norm(x,V) = norm(y, V) @ (©Gnorm(z,V)).
(f) x = (x y 2) = norm(z,V) = norm(y,V) @ norm(z, V).
(9) x = (EXPT y k) = norm(x,V) = norm(y, V)k.

The reader may wish to check that the SHNF for the polynomial —z+ x3(z +x — 3y) with respect
to the variable list (x y 2z) is once again

(POW 3 (POW 1 (POP 1 (POW 2 4 0)) 3)
(POP 1 (POW 4 2 5))).

Lemma 7 Let f € T(V), whereV = (vg ... vk_1) is a list of distinct symbols. Let N = (ng...ng—_1)
be a list of integers with £ > k and

A= (v ng) ... Vg—1 Nk—1)),

Then norm(f,V) € H and
evalh(norm(f,V), N) = evalp(f, A).

PrOOF: The case f = v; follows from Definitions 3 and 5 and Lemma 1; the other cases follow
from Definitions 3 and 5, induction, and Lemmas 3, 4, 5, and 6. O

Lemma 7 implies that if two polynomials produce the same normal form, then they are equivalent.
The converse follows from the next two lemmas.

Lemma 8 Let x € H. If x # 0, then there exists a list of integers N such that evalh(x, N) # 0.

PRrROOF: We shall prove, by induction on the structure of z, the following stronger statement: If
x € H, x #0, and y € H, then there exists a list of integers N such that evalh(z, N) # 0 and if
x = (POW i p ¢), then head(N) > 0 and |evalh(x, N)| > |evalh(y, NV).

Case 1. x € Z.
For any N, evalh(xz,N)=x # 0.

Case 2: x = (POP i p).
By induction, there exists a list M such that evalh(p, M) # 0. We need only choose N so that
NGO = M.

Case 3 x = (POW ¢ p q), where p€ Z or p = (POP j 7).
By induction, there exists a list N such that evalh(p, N) # 0. Since this value is independent of
head(N), we may choose

head(N) = > |evalh(g, NO)| + |evalh(y, N,
which implies
|evalh(z, N)| = |n* - evalh(p, N) + evalh(q, NV)| > n — |evalh(q, N®"))| > |evalh(y, NV).

Case 4: x = (POW i p ¢q), where p = (POW j 7 s).
By induction, we may choose N so that head(N) =n > 0 and

|evalh(p, N)| > |evalh((q® q) & (y ® y), N)|.
It follows that

levalh(z, N)| = |n'- evalh(p, N) + evalh(q, N)|

levalh(p, N')| — |evalh(q, NV))|

evalh((q ® g) ® (y ®), NV)| — |evalh(g, NV)|
= evalh(q, NM)? + evalh(y, NM)? — |evalh(q, ND)|
levalh(y, ND)| O

>
>

Y

Lemma 9 Letz e Handy e H. Ifc Dy =0, then x = Oy.

PROOF: First note that it follows from Definitions 7 and 8 that (a) if p € H and pop(i,p) = 0,
then p =0, and (b) if p € H, ¢ € H, and pow(i,p,q) =0, then p = ¢ =0.
The proof is by induction and a case analysis based on Definition 9. Suppose z ®y =0

Case 1: x € Z or y € Z.
It must be that both x € Z and y € Z and * ® y = z + y = 0, which implies y = —z = ©z.

Case 2: x = (POP i p).
Sincex @y =0,y = (POP j ¢). If i = j, then
z®y = pop(i,p®q) =0,

which implies p & ¢ = 0. By inductive hypothesis, p = &¢, and hence x = Sy.
If ¢ > j, then
x @y =pop(j, POP i—j p)Dgq) =0

implies (POP i —j p) @ q = 0, and by inductive hypothesis,
q=o(P0P i—j p) = (POP i —j ©p)

and y = (POP j (POP i —j & p), contradicting Definition 6.
The case i < j similarly leads to a contradiction.

Case 3: x = (POW i p q).
Sincex @y=0,y= (POW j r s).
If i = j, then x ® y = pow(i,p ®r,q® s), which implies p & r = ¢ ® s = 0. By induction, p = &r
and ¢ = &s, and hence x = Sy.
If ¢ > j, then
x@®y=pow(j,(POW i —j p 0) ®r,qds) =0

implies (POW ¢ —j p 0) &r =0, and by inductive hypothesis,
r=0F0W i—7p 0)=CFWi—37 ©p 0)

and y = (POW 5 (POW i—j ©p 0) s), contradicting Definition 6.
The case ¢ < j similarly leads to a contradiction. O

Theorem 1 If f and g are polynomial terms over a variable list V = (vg ... vg—1), then norm(f,V) =
norm(g, V') if and only if for every list of values N = (ng...nk—1), evalp(f, A) = evalp(g, A), where
A= ((Uo no) (Uk:fl ?”kal)).

PROOF: Let © = norm(f,V) and y = norm(g,V). If x = y, then by Lemma 7,
evalp(f, A) = evalh(z, N) = evalh(y, N) = evalp(g, A).

On the other hand, suppose & # y. Then by Lemma 9, since y = ©(0y), z ® (Sy) # 0, and
consequently, by Lemmas 3, 4, and 8, there exists N’ = (ng...n¢_1) such that

evalh(z ® (©y), N') = evalh(x, N") — evalh(y, N) # 0.
If ¢ > k, then let N be the initial segment of N’ of length k, N = (ng...nx_1). If £ < k, then let

N = (mg...mg_1)
TN 0 ife<i<k.

In the latter case, it follows from Definition 5 that evalh(z, N) = evalh(z, N') for every SHF z. Thus,
in either case, evalh(x, N) # evalh(y, N), and by Lemma 7,

evalp(f, A) = evalh(z, N) # evalh(y, N) = evalp(f, A). O

References

[1] ACL2 home page, www.cs.utexas.edu/users/moore/acl2/.

[2] Gregoire, Benjamin and Mahboubi, Assia.: Proving Equalities in a Coomutative Ring
Done Right in Coq. In: Proceedings of the 18th International Conference on Theorem
Proving in Higher Order Logics. Springer-Verlag (2005)

[3] Russinoff, David M.: A Computationally Surveyable Proof of the Curve25519 Group
Axioms. Unpublished manuscript, www.russinoff.com/papers/group.pdf.

