
Modeling the x87 Trans
endental Instru
tions withElementary Polynomial ApproximationsDavid M. Russino�De
ember 16, 20071 Introdu
tionThe x87 
oating-point instru
tion set in
ludes eight instru
tions that 
ompute a varietyof trigonometri
, logarithmi
, and exponential fun
tions: FSIN (sin x), FCOS (
os x),FSINCOS (sin x and 
os x), FPTAN (tan x), FPATAN (ar
tan x), F2XM1 (2x � 1),FYL2X (y � log2x), and FYL2XP1 (y � log2(x+1)). The inherent diÆ
ulty of 
omputingthese fun
tions a

urately presents a 
hallenge in their implementation, veri�
ation, anddo
umentation. Consequently, although this issue is not adequately addressed by thestandard programming manuals [1, 3℄, their spe
i�
ations 
annot realisti
ally be as rigidas those of other 
oating-point instru
tions.In 
ontrast, the elementary arithmeti
 operations are fully spe
i�ed by the IEEEstandard [2℄, whi
h requires the returned value to be the result of rounding the pre
isemathemati
al value of the modeled fun
tion a

ording to a rounding mode determinedby the pro
essor state. For the operations of division and square root extra
tion, thisis normally a
hieved by �rst 
omputing an approximation of the true value and thendetermining whether it is an overestimate or underestimate by applying the inverseoperation. For example, given an approximation z to the square root of an operand x,the proper dire
tion of rounding may be determined by 
omparing z2 to x.For a trans
endental fun
tion, while there are eÆ
ient algorithms for 
omputinga

urate approximations, the problem of 
orre
t rounding is intra
table be
ause theinverse fun
tion 
annot be evaluated pre
isely any more easily than the fun
tion itself.Consequently, a typi
al implementation simply 
omputes an approximation and roundsit. Regardless of the a

ura
y of this approximation, if it happens to be 
lose to arounding boundary, it may not round to the same result as the true mathemati
alvalue. In su
h 
ases, the spe
i�
ation of a trans
endental instru
tion must provide twoadmissible rounded results.Error analysis of 
oating-point operations is 
ommonly based on a measurementthat we shall 
all exponent-relative error, by whi
h the error of an approximation v withrespe
t to a true value v0 is 
omputed as����v � v02k ���� ;where k is the integer satisfying 2k � jv0j < 2k+1. A related quantity is the ulp (unit inthe last pla
e), whi
h depends on the pre
ision of the target format: for a format withn bits of pre
ision, an ulp (of v0) is the absolute error 
orresponding to an exponent-relative error of 1=2n�1. 1



In the 
ase of the x87 trans
endental instru
tions, the results of whi
h are en
oded inthe double extended pre
ision format, an ulp 
orresponds to an exponent-relative errorof 2�63. Intel makes the following 
laim regarding its produ
ts [3℄:With the Pentium pro
essor and later IA-32 pro
essors, the worst 
ase erroron trans
endental instru
tions is less than 1 ulp when rounding to the nearest(even) and less than 1.5 ulps when rounding in other modes.This approa
h to spe
ifying the a

ura
y of 
oating-point instru
tions su�ers from twode�
ien
ies.The �rst is the 
on
ation of approximation error and rounding error, whi
h a

ountsfor the 
onsideration of rounding mode in the spe
i�
ation quoted above. In both 
aseslisted, the error allowed in the rounded result is apparently intended to a

ommodatean error of .5 ulp in the approximation from whi
h it is derived. A more dire
t approa
hwould be to impose an error bound of .5 ulp on the unrounded approximation and torequire that it be rounded 
orre
tly with respe
t to the indi
ated mode.The se
ond is in the notion of exponent-relative error itself. Although it has theadvantage of being simply related to absolute error, it is less suitable for measuringapproximation error than rounding error be
ause of its arbitrary dependen
e on theproximity of v0 to the nearest power of 2. The most meaningful measure of the a

ura
yof a numeri
al algorithm, from a design or veri�
ation perspe
tive, is the standard notionof relative error, de�ned simply as ����v � v0v0 ���� :As a 
onsequen
e of the de�nitions, if the relative error of an approximation is �, thenits exponent-relative error may lie anywhere in the interval [�; 2�). It follows that theweakest bound on the relative error of approximation that ensures an exponent-relativeerror bound of 2�64, or .5 ulp, and therefore guarantees Intel's 
riterion of a

ura
y forthe trans
endental intru
tions, is 2�65. Thus, we propose the following as a spe
i�
ationof 
orre
tness: The result returned by a trans
endental intru
tion must be derived by
orre
tly rounding an approximation v of the pre
ise value v0 that satis�es����v � v0v0 ���� < 2�65:Implementations that meet the Intel 
riterion generally satisfy this spe
i�
ation as well,even though it is somewhat stri
ter, allowing only one or two admissible rounded resultsdepending on the proximity of v0 to a rounding boundary, whereas Intel allows at leasttwo admissible results and as many as four in some 
ases. In fa
t, today's 
ommer
ial x86pro
essors are designed to generate approximations of the trans
endental fun
tions thatare well within this range of error. However, be
ause of the usual emphasis on eÆ
ien
y,their designs are based on sophisti
ated algorithms and optimizations that are diÆ
ultto analyze. Consequently, 
on�den
e in their 
orre
tness 
annot be a
hieved withoutextensive testing, typi
ally through 
o-simulation with a trusted software model.The main di�eren
e between the design of su
h a model and that of a hardwareimplementation is that sin
e exe
ution eÆ
ien
y of the model is not an overriding 
on-
ern, it may be based on a simpler algorithm, one that is more sus
eptible to formalanalysis. On the other hand, the model fa
es the same issues with respe
t to a

ura
yas the implementation. Thus, not only might a 
ompliant implementation produ
e a2



result that di�ers from that of the model, but the model 
annot be expe
ted in all 
asesto validate that result with respe
t to the spe
i�
ation stated above, sin
e this wouldrequire an absolutely pre
ise 
omputation.However, if the approximations 
omputed by the software model and the hardwareimplementation are both suÆ
iently a

urate, then it is possible for the model to identifya range of values su
h that the following 
onditions hold:(a) Every value in this range satis�es the spe
i�ed relative error bound of 2�65.(b) The approximation 
omputed by the implementation may be expe
ted to lie withinthis range.It follows from (a) that for any IEEE rounding mode, the two endpoints of the rangeeither round to the same 64-bit value or round to two 
onse
utive 64-bit values, andfrom (b) that the �nal result returned by the implementation 
oin
ides with (at least)one of these rounded values. This provides a test that the implementation will fail ifit returns an in
orre
t result, and will pass if its approximation is as a

urate as it issupposed to be.In order to make this strategy 
on
rete, let vs and vh be the approximations 
omputedby the software model and the hardware implementation, respe
tively, and suppose thatwe have a known relative error bound for vs of 2�68 and a 
onje
tured bound for vh of2�66, neither of whi
h is unrealisti
. Thus, if the pre
ise targeted value is v0, thenv0(1� 2�68) < vs < v0(1 + 2�68)and v0(1� 2�66) < vh < v0(1 + 2�66):It follows thatvh < v0(1 + 2�66) < vs 1 + 2�661� 2�68 < v0 (1 + 2�68)(1 + 2�66)1� 2�68 < v0(1 + 2�65)and vh > v0(1� 2�66) > vs 1� 2�661 + 2�68 > v0 (1� 2�68)(1� 2�66)1 + 2�68 > v0(1� 2�65):Thus, if the implementation is as a

urate as advertised, then its approximation mustbe veri�ably within the rangevs 1� 2�661 + 2�68 < vh < vs 1 + 2�661� 2�68 ; (1)and from this it follows thatv0(1� 2�65) < vh < v0(1 + 2�65): (2)Consequently, 
orre
tness of the implementation as expressed by (2) may be veri�edby 
omparing the returned rounded value to the two rounded results produ
ed by theextreme values of the range given by (1).Our obje
tive, then, is to design an algorithm that may be easily understood and
omputes a rational approximation that may be rigorously veri�ed to satisfy a stri
trelative error bound of 2�68, for ea
h of the fun
tions of interest:3



� sin x, 
os x, and tan x, for ��4 � x � �4 ;� log2x, for x > 0;� 2x � 1, for �1 � x � 1;� ar
tan x, for �1 � x � 1.We a
knowledge that the domains 
ited for the trigonometri
 instru
tions represent smallsubsets of the intervals on whi
h these instru
tions a
tually operate. In fa
t, the 
laims ofa

ura
y are not valid outside of these restri
ted domains. In parti
ular, although FSIN,FCOS, FSINCOS, and FPTAN 
ompute numeri
al results for all operands in the range�263 < x < 263, this is a
hieved through a redu
tion pro
edure that produ
es grosslyina

urate results for jxj > �4 . This problem is well known but has been tolerated in theinterest of ba
kward 
ompatibility. It remains a mystery, however, why Intel insists, inits published do
umentation, on maintaining the myth that the redu
tion is designed\to guarantee no loss of signi�
an
e in a sour
e operand, provided the operand is withinthe spe
i�ed range for the instru
tion." [3℄In this note, we present a set of algorithms for the fun
tions listed above alongwith proofs of the required error bounds. All of the proofs are elementary enoughto be readily understood by a �rst year 
al
ulus student. The deepest result used isthe following restri
ted form of Taylor's Theorem, whi
h pertains to the Taylor seriesexpansion of f(x) about x = 0, known as the Ma
laurin series.Theorem 1 (Taylor) Let f be a fun
tion that is 
ontinuous together with its �rst n+1derivatives on an interval 
ontaining 0 and x. Thenf(x) = Pn(x) +Rn(x);where Pn(x) = f(0) + f 0(0) � x+ f 00(0)2! x2 + � � �+ f (n)(0)n! xn = nXk=0 f (k)(0)k! xkand Rn(x) = f (n+1)(
)(n+ 1)! xn+1;for some 
 between 0 and x.Although exe
ution eÆ
ien
y is not our �rst priority, our algorithms must admitimplementations that are fast enough to be of pra
ti
al use in 
o-simulation. In most
ases, a Taylor series approximation of at most sixty-�ve terms is suÆ
ient for thispurpose. The ex
eption is ar
 tangent, for whi
h the Taylor series 
onverges so slowlythat thousands of terms would be required to a
hieve the required a

ura
y. For this
ase, rather than appeal to more advan
ed methods, we refer to an elementary result ofH. Medina [4℄, whi
h provides a polynomial of degree 55 with the requisite a

ura
y. The�rst theorem stated below des
ribes a sequen
e of re
ursively de�ned polynomials hm(x)of degree 8m�1, of whi
h we shall make use of h7(x). The se
ond provides a 
losed formfor the 
oeÆ
ients of hm(x) that allows them to be 
omputed independently. Neither ofthe proofs of these results requires any mathemati
s beyond elementary 
al
ulus.4



Theorem 2 (Medina) Let p1(x) = 4� 4x2 + 5x4 � 4x5 + x6 and for m � 2,pm(x) = x4(1� x)4pm�1(x) + (�4)m�1p1(x):Let hm(x) = Z x0 (�1)m+14m pm(t)dt:Then for all x 2 [0; 1℄, jhm(x)� ar
tan xj � �14�5m :Theorem 3 (Medina) For m = 1; 2; : : :,hm(x) = 2mXj=1 (�1)j+12j � 1 x2j�1 + 4m�2Xj=0 aj(�1)m+14m(4m+ j + 1)x4m+j+1;where a2i = (�1)i+1 2mXk=i+1�4m2k�(�1)kand a2i�1 = (�1)i+1 2m�1Xk=i � 4m2k + 1�(�1)k:2 Trigonometri
 Fun
tionsThe Taylor series for sin x and 
os x are readily derived from the equations ddxsin x =
os x and ddx
os x = �sin x; the inequalities jsin xj � 1 and j
os xj � 1 provide simpleestimates of the remainders. Note that our error bound for these approximations isstrengthened to 2�70 so that they may be used to derive a suitably a

urate approxi-mation of tan x.Proposition 2.1 Let a 2 R with 0 < a � �4 and let� = 11Xk=1 (�1)k�1a2k�1(2k � 1)! :Then ����� � sin asin a ���� < 2�70:Proof: Applying Taylor's Theorem, we have, for all n 2 N and x 2 R,sin x = Pn(x) +Rn(x);where P2n(x) = x� x33! + x55! � � � �+ (�1)n�1x2n�1(2n� 1)! = nXk=1 (�1)k�1x2k�1(2k � 1)!5



and jR2n(x)j < jxj2n+1(2n+ 1)! :Thus, � = P22(a) and sin a = � +R22(a);where jR22(a)j � jaj2323! ;and hen
e, ����R22(a)a ���� � jaj2223! < 123! :On the other hand, by the Mean Value Theorem, there exists 
 between 0 and a su
hthat sin aa = sin a� sin 0a� 0 = ddx sin xjx=
 = 
os 
 � 
os �4 = p22 :Consequently,����� � sin asin a ���� = ����R22(a)sin a ���� = ����R22(a)a ���� ��� asin a ��� < 123! � p2 < 2�70: 2Proposition 2.2 Let a 2 R with 0 < a � �4 and let� = 11Xk=0 (�1)ka2k(2k)! :Then ������ 
os a
os a ���� < 2�70:Proof: Applying Taylor's Theorem, we have, for all n 2 N and x 2 R,
os x = Pn(x) +Rn(x);where P2n(x) = 1� x22! + x44! � � � �+ (�1)nx2n(2n)! = nXk=0 (�1)kx2k(2k)!and jR2n(x)j < jxj2n+1(2n+ 1)! :Thus, � = P22(a) and 
os a = �+R22(a);where jR22(a)j � jaj2323! < 123! :Sin
e 
os a � 
os �4 = p22 ,������ 
os a
os a ���� = ����R22(a)
os a ���� < p223! < 2�70: 26



Proposition 2.3 Let a 2 R with 0 < a � �4 and let � = �� , where � and � are de�nedas in Propositions 2.1 and 2.2. Then����� � tan atan a ���� < 2�68:Proof: Sin
e��tan a = ��� sin a
os a = � � sin a� +sin a(
os a� �)� 
os a = sin a� �� � sin asin a + 
os a� �
os a � ;we have � � tan atan a = 
os a� �� � sin asin a + 
os a� �
os a � :As noted in the proof of Proposition 2.2, j
os a� �j < 123! , and hen
e�
os a = 
os a� (
os a� �)
os a � 1� j
os a� �j
os a > 1� p223! > 12 ;whi
h yields � � tan atan a = ����
os a� �� � sin asin a + 
os a� �
os a ������ ���
os a� ��� ������ � sin asin a ����+ ����
os a� �
os a �����< 2(2�70 + 2�70)= 2�68: 23 The Logarithmi
 Fun
tionOur approximation of log2x is based on the identitylog2x = ln xln 2and the Ma
lauring series expansion of ln(1+x). Note that the estimate of ln 2 derivedin the proof is used again in the approximation of 2x given in the next se
tion.Proposition 3.1 For all n 2 N and x 2 R, letPn(x) = nXk=1 (�1)k+1xkk :Let � = �P66��12� = 66Xk=1 12kk :Given a 2 R, a > 0, let s and b be de�ned by a = 2bs, with b 2 Z and p22 < s < p2,and let � = b+ 1�P65(s� 1):7



Then 0 < ln 2� � � 2�72 and ���� log2a� �log2a ���� < 2�68:Proof: By Taylor's Theorem, for x > �1,ln(1 + x) = Pn(x) +Rn(x);where jRn(x)j = ���� (�1)nn!(1 + 
)n+1 � xn+1(n+ 1)! ���� = 1n+ 1 � jxj1 + 
�n+1for some 
 with j
j � jxj. Thus, if jxj � 12 , then jRn(x)j ! 0 as n!1 andln(1 + x) = 1Xk=1 (�1)k+1xkk :A stri
ter bound on the remainder may be a
hieved by observing thatjRn(x)j = ����� 1Xk=n+1 (�1)k+1xkk ����� � 1Xk=n+1 jxjkk � jxjnn+ 1 1Xk=1 jxjk � jxjnn+ 1 :In parti
ular,0 < ln 2� � = �ln�1� 12�+ P66��12� = �R66��12� � 1266 � 67 < 2�72;and 1� � 1ln 2 = ln 2� ��ln 2 < 4 � 2�72 = 2�70:Sin
e p22 � 1 < s� 1 � p2� 1;js� 1j < 12 . Also note that log2a = b+ log2s;where �12 < log2s � 12 ;and hen
e b� 12 < log2a � b+ 12 :It follows that if b � 1, then log2a > 12 , and if b � 1, then log2a � 12 . Thus, whwneverb 6= 0, jlog2aj � 12 > js� 1j. Suppose b = 0. Then log2a = log2s. If s � 1, thenjlog2sj = ���� ln sln 2 ���� = ���� 1ln 2 Z s1 dtt ���� = 1ln 2 Z 1s dtt � 1ln 2 Z 1s dt1 = js� 1jln 2 > js� 1j:Similarly, if s > 1, thenlog2s = 1ln 2 Z s1 dtt � 1ln 2 Z s1 dts = s� 1s ln 2 � s� 1p2 ln 2 > s� 1:8



Thus, in all 
ases, we have jlog2aj > s� 1:Therefore, ����Rn(s� 1)log2s ���� < js� 1jn�1n+ 1 < 12n�1(n+ 1)and ����Pn(s� 1)log2s ���� � nXk=1 js� 1jk�1 � nXk=1 12k�1 < 2:Now ln s = ln (1 + s� 1) = Pn(s� 1) +Rn(s� 1);and hen
e log2a = b+ log2s = b+ ln sln 2 = b+ 1ln 2(Pn(s� 1) +Rn(s� 1)):In parti
ular,jlog2a� �j = ���� 1ln 2(Pn(s� 1) +Rn(s� 1))� 1�P65(s� 1)����� ���� 1ln 2 � 1� ���� jP65(s� 1)j+ 1ln 2 jR65(s� 1)j< 2�70jP65(s� 1)j+ 2jR65(s� 1)jand ���� log2a� �log2a ���� < 2�70 � 2 + 2 � 126466 < 2�68: 24 The Exponential Fun
tionIn the proposition below, we derive an approximation � of 2a based on the de�nition2x = ex ln 2 and the Taylor series expansion of ex. Sin
e our 
on
ern is the relativeerror of �� 1 as an approximation of 2a � 1, we establish a bound on���� (�� 1)� (2a � 1)2a � 1 ���� = ����2a � �2a � 1 ���� :Proposition 4.1 Let a 2 R with 0 � jaj � 1 and let� = 22Xk=0 (�a)kk! ;where � =P66k=1 12kk . Then ����2a � �2a � 1 ���� < 2�68:
9



Proof: By Taylor's Theorem, sin
e dndxn exjx=0 = exjx=0 = 1 for all n, we have, forall n 2 N and x 2 R, ex = Pn(x) +Rn(x);where Pn(x) = 1 + x+ x22! + x33! + � � �+ xnn! = nXk=0 xkk!and jRn(x)j � max(ex; 1)jxjn+1(n+ 1)! :Note that � = P22(�a). Thus,2a � � = 2a � e�a +R22(�a)and ����2a � �a ���� � ����2a � e�aa ����+ ����R22(�a)a ���� :By Proposition 3.1, � < ln 2 < 1 and ln 2� � � 2�72. Consequently,����R22(�a)a ���� � ����max(e�a; 1)(�a)2323! � a ���� < ����2�23a2223! ���� < 223! < 2�70:By the Mean Value Theorem,ea ln 2 � e�aa ln 2� �a = ddxexjx=
 = e
for some 
 between a ln 2 and �a. But then e
 < ea ln 2 � e ln 2 = 2, and hen
ej2a � e�aj = jea ln 2 � e�aj � 2ja(ln 2� �)j � 2�71jajand ����2a � e�aa ���� � 2�71:Thus, ����2a � �a ���� � 2�71 + 2�70 < 2�69:Next, we shall derive an estimate of j(2a � 1)=aj. First suppose a > 0. Applying theMean Value Theorem again, we have2a � 1a = 2a � 20a� 0 = ddx2xjx=
 = 2
ln 2;where 0 � 
 � a, whi
h implies 2a � 1a � ln 2:Now suppose �1 � a � 0. Let f(x) = 2x � x=2. Sin
e f 00(x) = 2x(ln 2)2 > 0 for all x,the maximum value of f(x) for �1 � x � 0 must o

ur at either x = �1 or x = 0. Butthen sin
e f(�1) = 2�1 � (�1)=2 = 1 and f(0) = 20 � 0=2 = 1, that maximum is 1. In10



parti
ular, f(a) = 2a � a=2 � 1, whi
h implies j2a � 1j = 1 � 2a � �a=2 = ja=2j andj(2a � 1)=aj � 12 .Thus, in all 
ases, j(2a � 1)=aj � 12 , and hen
e����2a � �2a � 1 ���� = ����2a � �a ���� ���� a2a � 1 ���� < 2�69 � 2 = 2�68: 25 Ar
 TangentWe employ two distin
t methods for approximating ar
tan x, neither of whi
h is suÆ
ientalone for the entire domain 0 < jxj < 1. For jxj � 12 , we use the Taylor series, whi
h
onverges too slowly for arguments 
lose to 1. For jxj > 12 , we use Medina's result, whi
hprovides a bound on absolute error from whi
h we may derive the required estimate ofrelative error only if x is bounded away from 0.Sin
e the 
omputation given by Theorem 1 is unwieldy in this 
ase, we apply a moredire
t 
omputation in our derivation of the Taylor series. The two methods may beshown to produ
e the same result, but this is irrelevant to our obje
tive.Proposition 5.1 Let a 2 R with 0 � jaj � 1 and let� = 8<: P32k=1 (�1)k�1a2k�12k�1 if jaj � 12h7(a) if 12 � a � 1�h7(�a) if �1 � a � � 12 :Then ������ ar
tan aar
tan a ���� < 2�68:Proof: First 
onsider the 
ase a � 12 . By the Mean Value Theorem, for some 
,0 � j
j � jaj, ar
tan aa = ddxar
tan xjx=
 = 11 + 
2 � 11 + 14 = 45 :For n 2 N, letQn(x) = x� x33 + x55 � � � �+ (�1)n�1x2n�12n� 1 = nXk=1 (�1)k�1x2k�12k � 1 :Beginning with the algebrai
 identity11� z = 1+ z + z2 + � � �+ zn�1 + zn1� zand substituting �x2 for z, we ha
e11 + x2 = 1� x2 + x4 � � � �+ (�1)n�1x2n�2 + (�1)nx2n1 + x2 :Consequently, ar
tan a = Z a0 dx1 + x2 = Qn(a) + Z a0 (�1)nx2ndx1 + x2 ;11



and hen
ejQn(a)� ar
tan aj = ����Z a0 (�1)nx2ndx1 + x2 ���� � Z jaj0 x2ndx1 + x2 � Z jaj0 x2ndx = jaj2n+12n+ 1 :In parti
ular, sin
e � = Q32(a),������ ar
tan aa ���� � jaj6465 � 126465 :Thus, ������ ar
tan aar
tan a ���� = ������ ar
tan aa ���� ��� aar
tan a ��� � 126465 � 54 < 2�68:Now 
onsider the 
ase jaj > 12 : If a > 12 , then by Theorem 2,jh7(a)� ar
tan aj < �14�35 = 2�70:In order to establish a lower bound for ar
tan a, we apply the identitytan2� = 1� 
os 2�1 + 
os 2� ;whi
h yields tan2�8 = 1� p221 + p22 = 2�p22 +p2 = (2�p2)22 < 14 ;i.e, tan �8 < 12 , and hen
e ar
tan a > ar
tan 12 > �8 :Thus, ������ ar
tan aar
tan a ���� = ����h7(a)� ar
tan aar
tan a ���� < 2�70 � 8� < 2�68:On the other hand, if a < � 12 , then������ ar
tan aar
tan a ���� = �����h7(�a)� ar
tan aar
tan a ���� = �����h7(�a)� ar
tan(�a)ar
tan(�a) ���� < 2�68: 2Referen
es[1℄ Advan
ed Mi
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hite
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tri
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troni
 Engineers, IEEE Standard for Binary FloatingPoint Arithmeti
, Std. 754-1985, New York, N.Y., 1985.[3℄ Intel Corporation, Intel 64 and IA-32 Ar
hite
tures Software Developer's Manual,April 2008.[4℄ Medina, Herbert A., \A Sequen
e of Polynomials for Approximating Ar
tangent",Ameri
an Mathemati
al Monthly (113), pp.156-161, February 2006.12


