
Modeling the x87 Transendental Instrutions withElementary Polynomial ApproximationsDavid M. Russino�Deember 16, 20071 IntrodutionThe x87 oating-point instrution set inludes eight instrutions that ompute a varietyof trigonometri, logarithmi, and exponential funtions: FSIN (sin x), FCOS (os x),FSINCOS (sin x and os x), FPTAN (tan x), FPATAN (artan x), F2XM1 (2x � 1),FYL2X (y � log2x), and FYL2XP1 (y � log2(x+1)). The inherent diÆulty of omputingthese funtions aurately presents a hallenge in their implementation, veri�ation, anddoumentation. Consequently, although this issue is not adequately addressed by thestandard programming manuals [1, 3℄, their spei�ations annot realistially be as rigidas those of other oating-point instrutions.In ontrast, the elementary arithmeti operations are fully spei�ed by the IEEEstandard [2℄, whih requires the returned value to be the result of rounding the preisemathematial value of the modeled funtion aording to a rounding mode determinedby the proessor state. For the operations of division and square root extration, thisis normally ahieved by �rst omputing an approximation of the true value and thendetermining whether it is an overestimate or underestimate by applying the inverseoperation. For example, given an approximation z to the square root of an operand x,the proper diretion of rounding may be determined by omparing z2 to x.For a transendental funtion, while there are eÆient algorithms for omputingaurate approximations, the problem of orret rounding is intratable beause theinverse funtion annot be evaluated preisely any more easily than the funtion itself.Consequently, a typial implementation simply omputes an approximation and roundsit. Regardless of the auray of this approximation, if it happens to be lose to arounding boundary, it may not round to the same result as the true mathematialvalue. In suh ases, the spei�ation of a transendental instrution must provide twoadmissible rounded results.Error analysis of oating-point operations is ommonly based on a measurementthat we shall all exponent-relative error, by whih the error of an approximation v withrespet to a true value v0 is omputed as����v � v02k ���� ;where k is the integer satisfying 2k � jv0j < 2k+1. A related quantity is the ulp (unit inthe last plae), whih depends on the preision of the target format: for a format withn bits of preision, an ulp (of v0) is the absolute error orresponding to an exponent-relative error of 1=2n�1. 1



In the ase of the x87 transendental instrutions, the results of whih are enoded inthe double extended preision format, an ulp orresponds to an exponent-relative errorof 2�63. Intel makes the following laim regarding its produts [3℄:With the Pentium proessor and later IA-32 proessors, the worst ase erroron transendental instrutions is less than 1 ulp when rounding to the nearest(even) and less than 1.5 ulps when rounding in other modes.This approah to speifying the auray of oating-point instrutions su�ers from twode�ienies.The �rst is the onation of approximation error and rounding error, whih aountsfor the onsideration of rounding mode in the spei�ation quoted above. In both aseslisted, the error allowed in the rounded result is apparently intended to aommodatean error of .5 ulp in the approximation from whih it is derived. A more diret approahwould be to impose an error bound of .5 ulp on the unrounded approximation and torequire that it be rounded orretly with respet to the indiated mode.The seond is in the notion of exponent-relative error itself. Although it has theadvantage of being simply related to absolute error, it is less suitable for measuringapproximation error than rounding error beause of its arbitrary dependene on theproximity of v0 to the nearest power of 2. The most meaningful measure of the aurayof a numerial algorithm, from a design or veri�ation perspetive, is the standard notionof relative error, de�ned simply as ����v � v0v0 ���� :As a onsequene of the de�nitions, if the relative error of an approximation is �, thenits exponent-relative error may lie anywhere in the interval [�; 2�). It follows that theweakest bound on the relative error of approximation that ensures an exponent-relativeerror bound of 2�64, or .5 ulp, and therefore guarantees Intel's riterion of auray forthe transendental intrutions, is 2�65. Thus, we propose the following as a spei�ationof orretness: The result returned by a transendental intrution must be derived byorretly rounding an approximation v of the preise value v0 that satis�es����v � v0v0 ���� < 2�65:Implementations that meet the Intel riterion generally satisfy this spei�ation as well,even though it is somewhat striter, allowing only one or two admissible rounded resultsdepending on the proximity of v0 to a rounding boundary, whereas Intel allows at leasttwo admissible results and as many as four in some ases. In fat, today's ommerial x86proessors are designed to generate approximations of the transendental funtions thatare well within this range of error. However, beause of the usual emphasis on eÆieny,their designs are based on sophistiated algorithms and optimizations that are diÆultto analyze. Consequently, on�dene in their orretness annot be ahieved withoutextensive testing, typially through o-simulation with a trusted software model.The main di�erene between the design of suh a model and that of a hardwareimplementation is that sine exeution eÆieny of the model is not an overriding on-ern, it may be based on a simpler algorithm, one that is more suseptible to formalanalysis. On the other hand, the model faes the same issues with respet to aurayas the implementation. Thus, not only might a ompliant implementation produe a2



result that di�ers from that of the model, but the model annot be expeted in all asesto validate that result with respet to the spei�ation stated above, sine this wouldrequire an absolutely preise omputation.However, if the approximations omputed by the software model and the hardwareimplementation are both suÆiently aurate, then it is possible for the model to identifya range of values suh that the following onditions hold:(a) Every value in this range satis�es the spei�ed relative error bound of 2�65.(b) The approximation omputed by the implementation may be expeted to lie withinthis range.It follows from (a) that for any IEEE rounding mode, the two endpoints of the rangeeither round to the same 64-bit value or round to two onseutive 64-bit values, andfrom (b) that the �nal result returned by the implementation oinides with (at least)one of these rounded values. This provides a test that the implementation will fail ifit returns an inorret result, and will pass if its approximation is as aurate as it issupposed to be.In order to make this strategy onrete, let vs and vh be the approximations omputedby the software model and the hardware implementation, respetively, and suppose thatwe have a known relative error bound for vs of 2�68 and a onjetured bound for vh of2�66, neither of whih is unrealisti. Thus, if the preise targeted value is v0, thenv0(1� 2�68) < vs < v0(1 + 2�68)and v0(1� 2�66) < vh < v0(1 + 2�66):It follows thatvh < v0(1 + 2�66) < vs 1 + 2�661� 2�68 < v0 (1 + 2�68)(1 + 2�66)1� 2�68 < v0(1 + 2�65)and vh > v0(1� 2�66) > vs 1� 2�661 + 2�68 > v0 (1� 2�68)(1� 2�66)1 + 2�68 > v0(1� 2�65):Thus, if the implementation is as aurate as advertised, then its approximation mustbe veri�ably within the rangevs 1� 2�661 + 2�68 < vh < vs 1 + 2�661� 2�68 ; (1)and from this it follows thatv0(1� 2�65) < vh < v0(1 + 2�65): (2)Consequently, orretness of the implementation as expressed by (2) may be veri�edby omparing the returned rounded value to the two rounded results produed by theextreme values of the range given by (1).Our objetive, then, is to design an algorithm that may be easily understood andomputes a rational approximation that may be rigorously veri�ed to satisfy a stritrelative error bound of 2�68, for eah of the funtions of interest:3



� sin x, os x, and tan x, for ��4 � x � �4 ;� log2x, for x > 0;� 2x � 1, for �1 � x � 1;� artan x, for �1 � x � 1.We aknowledge that the domains ited for the trigonometri instrutions represent smallsubsets of the intervals on whih these instrutions atually operate. In fat, the laims ofauray are not valid outside of these restrited domains. In partiular, although FSIN,FCOS, FSINCOS, and FPTAN ompute numerial results for all operands in the range�263 < x < 263, this is ahieved through a redution proedure that produes grosslyinaurate results for jxj > �4 . This problem is well known but has been tolerated in theinterest of bakward ompatibility. It remains a mystery, however, why Intel insists, inits published doumentation, on maintaining the myth that the redution is designed\to guarantee no loss of signi�ane in a soure operand, provided the operand is withinthe spei�ed range for the instrution." [3℄In this note, we present a set of algorithms for the funtions listed above alongwith proofs of the required error bounds. All of the proofs are elementary enoughto be readily understood by a �rst year alulus student. The deepest result used isthe following restrited form of Taylor's Theorem, whih pertains to the Taylor seriesexpansion of f(x) about x = 0, known as the Malaurin series.Theorem 1 (Taylor) Let f be a funtion that is ontinuous together with its �rst n+1derivatives on an interval ontaining 0 and x. Thenf(x) = Pn(x) +Rn(x);where Pn(x) = f(0) + f 0(0) � x+ f 00(0)2! x2 + � � �+ f (n)(0)n! xn = nXk=0 f (k)(0)k! xkand Rn(x) = f (n+1)()(n+ 1)! xn+1;for some  between 0 and x.Although exeution eÆieny is not our �rst priority, our algorithms must admitimplementations that are fast enough to be of pratial use in o-simulation. In mostases, a Taylor series approximation of at most sixty-�ve terms is suÆient for thispurpose. The exeption is ar tangent, for whih the Taylor series onverges so slowlythat thousands of terms would be required to ahieve the required auray. For thisase, rather than appeal to more advaned methods, we refer to an elementary result ofH. Medina [4℄, whih provides a polynomial of degree 55 with the requisite auray. The�rst theorem stated below desribes a sequene of reursively de�ned polynomials hm(x)of degree 8m�1, of whih we shall make use of h7(x). The seond provides a losed formfor the oeÆients of hm(x) that allows them to be omputed independently. Neither ofthe proofs of these results requires any mathematis beyond elementary alulus.4



Theorem 2 (Medina) Let p1(x) = 4� 4x2 + 5x4 � 4x5 + x6 and for m � 2,pm(x) = x4(1� x)4pm�1(x) + (�4)m�1p1(x):Let hm(x) = Z x0 (�1)m+14m pm(t)dt:Then for all x 2 [0; 1℄, jhm(x)� artan xj � �14�5m :Theorem 3 (Medina) For m = 1; 2; : : :,hm(x) = 2mXj=1 (�1)j+12j � 1 x2j�1 + 4m�2Xj=0 aj(�1)m+14m(4m+ j + 1)x4m+j+1;where a2i = (�1)i+1 2mXk=i+1�4m2k�(�1)kand a2i�1 = (�1)i+1 2m�1Xk=i � 4m2k + 1�(�1)k:2 Trigonometri FuntionsThe Taylor series for sin x and os x are readily derived from the equations ddxsin x =os x and ddxos x = �sin x; the inequalities jsin xj � 1 and jos xj � 1 provide simpleestimates of the remainders. Note that our error bound for these approximations isstrengthened to 2�70 so that they may be used to derive a suitably aurate approxi-mation of tan x.Proposition 2.1 Let a 2 R with 0 < a � �4 and let� = 11Xk=1 (�1)k�1a2k�1(2k � 1)! :Then ����� � sin asin a ���� < 2�70:Proof: Applying Taylor's Theorem, we have, for all n 2 N and x 2 R,sin x = Pn(x) +Rn(x);where P2n(x) = x� x33! + x55! � � � �+ (�1)n�1x2n�1(2n� 1)! = nXk=1 (�1)k�1x2k�1(2k � 1)!5



and jR2n(x)j < jxj2n+1(2n+ 1)! :Thus, � = P22(a) and sin a = � +R22(a);where jR22(a)j � jaj2323! ;and hene, ����R22(a)a ���� � jaj2223! < 123! :On the other hand, by the Mean Value Theorem, there exists  between 0 and a suhthat sin aa = sin a� sin 0a� 0 = ddx sin xjx= = os  � os �4 = p22 :Consequently,����� � sin asin a ���� = ����R22(a)sin a ���� = ����R22(a)a ���� ��� asin a ��� < 123! � p2 < 2�70: 2Proposition 2.2 Let a 2 R with 0 < a � �4 and let� = 11Xk=0 (�1)ka2k(2k)! :Then ������ os aos a ���� < 2�70:Proof: Applying Taylor's Theorem, we have, for all n 2 N and x 2 R,os x = Pn(x) +Rn(x);where P2n(x) = 1� x22! + x44! � � � �+ (�1)nx2n(2n)! = nXk=0 (�1)kx2k(2k)!and jR2n(x)j < jxj2n+1(2n+ 1)! :Thus, � = P22(a) and os a = �+R22(a);where jR22(a)j � jaj2323! < 123! :Sine os a � os �4 = p22 ,������ os aos a ���� = ����R22(a)os a ���� < p223! < 2�70: 26



Proposition 2.3 Let a 2 R with 0 < a � �4 and let � = �� , where � and � are de�nedas in Propositions 2.1 and 2.2. Then����� � tan atan a ���� < 2�68:Proof: Sine��tan a = ��� sin aos a = � � sin a� +sin a(os a� �)� os a = sin a� �� � sin asin a + os a� �os a � ;we have � � tan atan a = os a� �� � sin asin a + os a� �os a � :As noted in the proof of Proposition 2.2, jos a� �j < 123! , and hene�os a = os a� (os a� �)os a � 1� jos a� �jos a > 1� p223! > 12 ;whih yields � � tan atan a = ����os a� �� � sin asin a + os a� �os a ������ ���os a� ��� ������ � sin asin a ����+ ����os a� �os a �����< 2(2�70 + 2�70)= 2�68: 23 The Logarithmi FuntionOur approximation of log2x is based on the identitylog2x = ln xln 2and the Malauring series expansion of ln(1+x). Note that the estimate of ln 2 derivedin the proof is used again in the approximation of 2x given in the next setion.Proposition 3.1 For all n 2 N and x 2 R, letPn(x) = nXk=1 (�1)k+1xkk :Let � = �P66��12� = 66Xk=1 12kk :Given a 2 R, a > 0, let s and b be de�ned by a = 2bs, with b 2 Z and p22 < s < p2,and let � = b+ 1�P65(s� 1):7



Then 0 < ln 2� � � 2�72 and ���� log2a� �log2a ���� < 2�68:Proof: By Taylor's Theorem, for x > �1,ln(1 + x) = Pn(x) +Rn(x);where jRn(x)j = ���� (�1)nn!(1 + )n+1 � xn+1(n+ 1)! ���� = 1n+ 1 � jxj1 + �n+1for some  with jj � jxj. Thus, if jxj � 12 , then jRn(x)j ! 0 as n!1 andln(1 + x) = 1Xk=1 (�1)k+1xkk :A striter bound on the remainder may be ahieved by observing thatjRn(x)j = ����� 1Xk=n+1 (�1)k+1xkk ����� � 1Xk=n+1 jxjkk � jxjnn+ 1 1Xk=1 jxjk � jxjnn+ 1 :In partiular,0 < ln 2� � = �ln�1� 12�+ P66��12� = �R66��12� � 1266 � 67 < 2�72;and 1� � 1ln 2 = ln 2� ��ln 2 < 4 � 2�72 = 2�70:Sine p22 � 1 < s� 1 � p2� 1;js� 1j < 12 . Also note that log2a = b+ log2s;where �12 < log2s � 12 ;and hene b� 12 < log2a � b+ 12 :It follows that if b � 1, then log2a > 12 , and if b � 1, then log2a � 12 . Thus, whwneverb 6= 0, jlog2aj � 12 > js� 1j. Suppose b = 0. Then log2a = log2s. If s � 1, thenjlog2sj = ���� ln sln 2 ���� = ���� 1ln 2 Z s1 dtt ���� = 1ln 2 Z 1s dtt � 1ln 2 Z 1s dt1 = js� 1jln 2 > js� 1j:Similarly, if s > 1, thenlog2s = 1ln 2 Z s1 dtt � 1ln 2 Z s1 dts = s� 1s ln 2 � s� 1p2 ln 2 > s� 1:8



Thus, in all ases, we have jlog2aj > s� 1:Therefore, ����Rn(s� 1)log2s ���� < js� 1jn�1n+ 1 < 12n�1(n+ 1)and ����Pn(s� 1)log2s ���� � nXk=1 js� 1jk�1 � nXk=1 12k�1 < 2:Now ln s = ln (1 + s� 1) = Pn(s� 1) +Rn(s� 1);and hene log2a = b+ log2s = b+ ln sln 2 = b+ 1ln 2(Pn(s� 1) +Rn(s� 1)):In partiular,jlog2a� �j = ���� 1ln 2(Pn(s� 1) +Rn(s� 1))� 1�P65(s� 1)����� ���� 1ln 2 � 1� ���� jP65(s� 1)j+ 1ln 2 jR65(s� 1)j< 2�70jP65(s� 1)j+ 2jR65(s� 1)jand ���� log2a� �log2a ���� < 2�70 � 2 + 2 � 126466 < 2�68: 24 The Exponential FuntionIn the proposition below, we derive an approximation � of 2a based on the de�nition2x = ex ln 2 and the Taylor series expansion of ex. Sine our onern is the relativeerror of �� 1 as an approximation of 2a � 1, we establish a bound on���� (�� 1)� (2a � 1)2a � 1 ���� = ����2a � �2a � 1 ���� :Proposition 4.1 Let a 2 R with 0 � jaj � 1 and let� = 22Xk=0 (�a)kk! ;where � =P66k=1 12kk . Then ����2a � �2a � 1 ���� < 2�68:
9



Proof: By Taylor's Theorem, sine dndxn exjx=0 = exjx=0 = 1 for all n, we have, forall n 2 N and x 2 R, ex = Pn(x) +Rn(x);where Pn(x) = 1 + x+ x22! + x33! + � � �+ xnn! = nXk=0 xkk!and jRn(x)j � max(ex; 1)jxjn+1(n+ 1)! :Note that � = P22(�a). Thus,2a � � = 2a � e�a +R22(�a)and ����2a � �a ���� � ����2a � e�aa ����+ ����R22(�a)a ���� :By Proposition 3.1, � < ln 2 < 1 and ln 2� � � 2�72. Consequently,����R22(�a)a ���� � ����max(e�a; 1)(�a)2323! � a ���� < ����2�23a2223! ���� < 223! < 2�70:By the Mean Value Theorem,ea ln 2 � e�aa ln 2� �a = ddxexjx= = efor some  between a ln 2 and �a. But then e < ea ln 2 � e ln 2 = 2, and henej2a � e�aj = jea ln 2 � e�aj � 2ja(ln 2� �)j � 2�71jajand ����2a � e�aa ���� � 2�71:Thus, ����2a � �a ���� � 2�71 + 2�70 < 2�69:Next, we shall derive an estimate of j(2a � 1)=aj. First suppose a > 0. Applying theMean Value Theorem again, we have2a � 1a = 2a � 20a� 0 = ddx2xjx= = 2ln 2;where 0 �  � a, whih implies 2a � 1a � ln 2:Now suppose �1 � a � 0. Let f(x) = 2x � x=2. Sine f 00(x) = 2x(ln 2)2 > 0 for all x,the maximum value of f(x) for �1 � x � 0 must our at either x = �1 or x = 0. Butthen sine f(�1) = 2�1 � (�1)=2 = 1 and f(0) = 20 � 0=2 = 1, that maximum is 1. In10



partiular, f(a) = 2a � a=2 � 1, whih implies j2a � 1j = 1 � 2a � �a=2 = ja=2j andj(2a � 1)=aj � 12 .Thus, in all ases, j(2a � 1)=aj � 12 , and hene����2a � �2a � 1 ���� = ����2a � �a ���� ���� a2a � 1 ���� < 2�69 � 2 = 2�68: 25 Ar TangentWe employ two distint methods for approximating artan x, neither of whih is suÆientalone for the entire domain 0 < jxj < 1. For jxj � 12 , we use the Taylor series, whihonverges too slowly for arguments lose to 1. For jxj > 12 , we use Medina's result, whihprovides a bound on absolute error from whih we may derive the required estimate ofrelative error only if x is bounded away from 0.Sine the omputation given by Theorem 1 is unwieldy in this ase, we apply a morediret omputation in our derivation of the Taylor series. The two methods may beshown to produe the same result, but this is irrelevant to our objetive.Proposition 5.1 Let a 2 R with 0 � jaj � 1 and let� = 8<: P32k=1 (�1)k�1a2k�12k�1 if jaj � 12h7(a) if 12 � a � 1�h7(�a) if �1 � a � � 12 :Then ������ artan aartan a ���� < 2�68:Proof: First onsider the ase a � 12 . By the Mean Value Theorem, for some ,0 � jj � jaj, artan aa = ddxartan xjx= = 11 + 2 � 11 + 14 = 45 :For n 2 N, letQn(x) = x� x33 + x55 � � � �+ (�1)n�1x2n�12n� 1 = nXk=1 (�1)k�1x2k�12k � 1 :Beginning with the algebrai identity11� z = 1+ z + z2 + � � �+ zn�1 + zn1� zand substituting �x2 for z, we hae11 + x2 = 1� x2 + x4 � � � �+ (�1)n�1x2n�2 + (�1)nx2n1 + x2 :Consequently, artan a = Z a0 dx1 + x2 = Qn(a) + Z a0 (�1)nx2ndx1 + x2 ;11



and henejQn(a)� artan aj = ����Z a0 (�1)nx2ndx1 + x2 ���� � Z jaj0 x2ndx1 + x2 � Z jaj0 x2ndx = jaj2n+12n+ 1 :In partiular, sine � = Q32(a),������ artan aa ���� � jaj6465 � 126465 :Thus, ������ artan aartan a ���� = ������ artan aa ���� ��� aartan a ��� � 126465 � 54 < 2�68:Now onsider the ase jaj > 12 : If a > 12 , then by Theorem 2,jh7(a)� artan aj < �14�35 = 2�70:In order to establish a lower bound for artan a, we apply the identitytan2� = 1� os 2�1 + os 2� ;whih yields tan2�8 = 1� p221 + p22 = 2�p22 +p2 = (2�p2)22 < 14 ;i.e, tan �8 < 12 , and hene artan a > artan 12 > �8 :Thus, ������ artan aartan a ���� = ����h7(a)� artan aartan a ���� < 2�70 � 8� < 2�68:On the other hand, if a < � 12 , then������ artan aartan a ���� = �����h7(�a)� artan aartan a ���� = �����h7(�a)� artan(�a)artan(�a) ���� < 2�68: 2Referenes[1℄ Advaned Miro Devies, In., AMD64 Arhiteture Programmer's Manual,Rev. 3.11, Deember 2005.[2℄ Institute of Eletrial and Eletroni Engineers, IEEE Standard for Binary FloatingPoint Arithmeti, Std. 754-1985, New York, N.Y., 1985.[3℄ Intel Corporation, Intel 64 and IA-32 Arhitetures Software Developer's Manual,April 2008.[4℄ Medina, Herbert A., \A Sequene of Polynomials for Approximating Artangent",Amerian Mathematial Monthly (113), pp.156-161, February 2006.12


