Modeling the x87 Transcendental Instructions with
Elementary Polynomial Approximations

David M. Russinoff

December 16, 2007

1 Introduction

The x87 floating-point instruction set includes eight instructions that compute a variety
of trigonometric, logarithmic, and exponential functions: FSIN (sin z), FCOS (cos z),
FSINCOS (sin z and cos), FPTAN (tan z), FPATAN (arctan z), F2XM1 (2% — 1),
FYL2X (y-logyz), and FYL2XP1 (y-log,(z 4+ 1)). The inherent difficulty of computing
these functions accurately presents a challenge in their implementation, verification, and
documentation. Consequently, although this issue is not adequately addressed by the
standard programming manuals [1, 3], their specifications cannot realistically be as rigid
as those of other floating-point instructions.

In contrast, the elementary arithmetic operations are fully specified by the IEEE
standard [2], which requires the returned value to be the result of rounding the precise
mathematical value of the modeled function according to a rounding mode determined
by the processor state. For the operations of division and square root extraction, this
is normally achieved by first computing an approximation of the true value and then
determining whether it is an overestimate or underestimate by applying the inverse
operation. For example, given an approximation z to the square root of an operand =z,
the proper direction of rounding may be determined by comparing 22 to z.

For a transcendental function, while there are efficient algorithms for computing
accurate approximations, the problem of correct rounding is intractable because the
inverse function cannot be evaluated precisely any more easily than the function itself.
Consequently, a typical implementation simply computes an approximation and rounds
it. Regardless of the accuracy of this approximation, if it happens to be close to a
rounding boundary, it may not round to the same result as the true mathematical
value. In such cases, the specification of a transcendental instruction must provide two
admissible rounded results.

Error analysis of floating-point operations is commonly based on a measurement
that we shall call exponent-relative error, by which the error of an approximation v with
respect to a true value vy is computed as

vV — Vg
2k

where k is the integer satisfying 2% < |vg| < 2¥+!. A related quantity is the ulp (unit in
the last place), which depends on the precision of the target format: for a format with
n bits of precision, an ulp (of vg) is the absolute error corresponding to an exponent-
relative error of 1/2" 1.

In the case of the x87 transcendental instructions, the results of which are encoded in
the double extended precision format, an ulp corresponds to an exponent-relative error
of 2763 Intel makes the following claim regarding its products [3]:

With the Pentium processor and later IA-32 processors, the worst case error
on transcendental instructions is less than 1 ulp when rounding to the nearest
(even) and less than 1.5 ulps when rounding in other modes.

This approach to specifying the accuracy of floating-point instructions suffers from two
deficiencies.

The first is the conflation of approximation error and rounding error, which accounts
for the consideration of rounding mode in the specification quoted above. In both cases
listed, the error allowed in the rounded result is apparently intended to accommodate
an error of .5 ulp in the approximation from which it is derived. A more direct approach
would be to impose an error bound of .5 ulp on the unrounded approximation and to
require that it be rounded correctly with respect to the indicated mode.

The second is in the notion of exponent-relative error itself. Although it has the
advantage of being simply related to absolute error, it is less suitable for measuring
approximation error than rounding error because of its arbitrary dependence on the
proximity of vg to the nearest power of 2. The most meaningful measure of the accuracy
of a numerical algorithm, from a design or verification perspective, is the standard notion
of relative error, defined simply as
vV — Yo

Vo

As a consequence of the definitions, if the relative error of an approximation is €, then
its exponent-relative error may lie anywhere in the interval [e,2¢). It follows that the
weakest bound on the relative error of approximation that ensures an exponent-relative
error bound of 274, or .5 ulp, and therefore guarantees Intel’s criterion of accuracy for
the transcendental intructions, is 27, Thus, we propose the following as a specification
of correctness: The result returned by a transcendental intruction must be derived by
correctly rounding an approzimation v of the precise value vy that satisfies

v — v
— 2 <276

Vo

Implementations that meet the Intel criterion generally satisfy this specification as well,
even though it is somewhat stricter, allowing only one or two admissible rounded results
depending on the proximity of vy to a rounding boundary, whereas Intel allows at least
two admissible results and as many as four in some cases. In fact, today’s commercial x86
processors are designed to generate approximations of the transcendental functions that
are well within this range of error. However, because of the usual emphasis on efficiency,
their designs are based on sophisticated algorithms and optimizations that are difficult
to analyze. Consequently, confidence in their correctness cannot be achieved without
extensive testing, typically through co-simulation with a trusted software model.

The main difference between the design of such a model and that of a hardware
implementation is that since execution efficiency of the model is not an overriding con-
cern, it may be based on a simpler algorithm, one that is more susceptible to formal
analysis. On the other hand, the model faces the same issues with respect to accuracy
as the implementation. Thus, not only might a compliant implementation produce a

result that differs from that of the model, but the model cannot be expected in all cases
to validate that result with respect to the specification stated above, since this would
require an absolutely precise computation.

However, if the approximations computed by the software model and the hardware
implementation are both sufficiently accurate, then it is possible for the model to identify
a range of values such that the following conditions hold:

(a) Every value in this range satisfies the specified relative error bound of 279%.

(b) The approximation computed by the implementation may be expected to lie within
this range.

It follows from (a) that for any IEEE rounding mode, the two endpoints of the range
either round to the same 64-bit value or round to two consecutive 64-bit values, and
from (b) that the final result returned by the implementation coincides with (at least)
one of these rounded values. This provides a test that the implementation will fail if
it returns an incorrect result, and will pass if its approximation is as accurate as it is
supposed to be.

In order to make this strategy concrete, let v5 and v, be the approximations computed
by the software model and the hardware implementation, respectively, and suppose that
we have a known relative error bound for v, of 27 and a conjectured bound for v, of
2766 neither of which is unrealistic. Thus, if the precise targeted value is vg, then

vp(1 —27%8) <, < wg(142798)

and
vo(1 —275%) < vy, < wo(1 4 2799).
It follows that

142766 (1+2768)(1 + 2-66)
1-2 08 " 1208

vp < vo(1 +275%) <, < (14 27%)

and

12766 (1-276%)(1 2%

—66
vp > vo(l — 2)>vsl+2768>v0 PR

> (1 —27%9).

Thus, if the implementation is as accurate as advertised, then its approximation must
be verifiably within the range

1— 266 142766
Usm<vh<vsma (1)
and from this it follows that
vo(1—27%) < vy < wp(1+275). 2)

Consequently, correctness of the implementation as expressed by (2) may be verified
by comparing the returned rounded value to the two rounded results produced by the
extreme values of the range given by (1).

Our objective, then, is to design an algorithm that may be easily understood and
computes a rational approximation that may be rigorously verified to satisfy a strict
relative error bound of 278 for each of the functions of interest:

e sin z, cos z, and tan z, for —

log,z, for x > 0;
e 2% — 1 for -1 <z <1,
e arctan z, for —1 <z < 1.

We acknowledge that the domains cited for the trigonometric instructions represent small
subsets of the intervals on which these instructions actually operate. In fact, the claims of
accuracy are not valid outside of these restricted domains. In particular, although FSIN,
FCOS, FSINCOS, and FPTAN compute numerical results for all operands in the range
—263 < ¢ < 203 this is achieved through a reduction procedure that produces grossly
inaccurate results for [z| > Z. This problem is well known but has been tolerated in the
interest, of backward compatibility. It remains a mystery, however, why Intel insists, in
its published documentation, on maintaining the myth that the reduction is designed
“to guarantee no loss of significance in a source operand, provided the operand is within
the specified range for the instruction.” [3]

In this note, we present a set of algorithms for the functions listed above along
with proofs of the required error bounds. All of the proofs are elementary enough
to be readily understood by a first year calculus student. The deepest result used is
the following restricted form of Taylor’s Theorem, which pertains to the Taylor series
expansion of f(z) about z = 0, known as the Maclaurin series.

Theorem 1 (Taylor) Let f be a function that is continuous together with its first n+1
derivatives on an interval containing 0 and x. Then

where

Pn(:v)=f(0)+f’(0)-x+f';ﬁw2+...+f(’:'(o) "\ f“z'(O) k

and

for some ¢ between 0 and .

Although execution efficiency is not our first priority, our algorithms must admit
implementations that are fast enough to be of practical use in co-simulation. In most
cases, a Taylor series approximation of at most sixty-five terms is sufficient for this
purpose. The exception is arc tangent, for which the Taylor series converges so slowly
that thousands of terms would be required to achieve the required accuracy. For this
case, rather than appeal to more advanced methods, we refer to an elementary result of
H. Medina [4], which provides a polynomial of degree 55 with the requisite accuracy. The
first theorem stated below describes a sequence of recursively defined polynomials h,, ()
of degree 8m — 1, of which we shall make use of h;(z). The second provides a closed form
for the coefficients of h,,(z) that allows them to be computed independently. Neither of
the proofs of these results requires any mathematics beyond elementary calculus.

Theorem 2 (Medina) Let pi(z) = 4 — 42* + 52* — 42° + 2% and for m > 2,

pm(z) = 2t (1 — @) pm—1(z) + (4™ 'pi ().

z (_ 1\ym+1
) = [pa o

Let

Then for all z € [0,1],
1 5m
|hm (z) — arctan z| < (Z) .

Theorem 3 (Medina) Form =1,2,...,

) = 30 CD i R i i1
=TT 2o (SO + 1) ’
where
) 2m 4m
asi = (=1)"1 37 <2k>(_1)k
k=i+1
and

2m—1
. 4m
a2i—1 = (*I)H_l Z <2k—|— 1>(l)k-
k=i

2 Trigonometric Functions

The Taylor series for sin and cos = are readily derived from the equations %sin T =
cos z and “Lcos 2 = —sin z; the inequalities [sin 2| < 1 and |cos z| < 1 provide simple

estimates of the remainders. Note that our error bound for these approximations is
strengthened to 277 so that they may be used to derive a suitably accurate approxi-
mation of tan z.

Proposition 2.1 Leta € R with 0 < a < 7 and let

11 (_1)k71a2k71

—_1)!
P (2k —1)!
Then
o —sina <90
sin a '

PROOF: Applying Taylor’s Theorem, we have, for all n € N and z € R,

sin © = P, (x) + Ry (z)

where
3 5 (_1)7171 2n—1 n (_1)k71w2k71

Pzn(fﬁ):mf—-l-x—*"'-l'—w:ZW

| | — |
ETRT (2n — 1)!]

and g
z|2n

Thus, 0 = Psa(a) and
sin a = 0 + Raa(a),

where]2
a
|R22(a)\ < 231
and hence,
Ryz(a)| _ [a*? <L
a - 23! 23!°

On the other hand, by the Mean Value Theorem, there exists ¢ between 0 and a such
that

sin a sin a — sin 0 d . | S s V2
= = —sin |z = COS ¢ > COS — = —.
a a—0 dz r=e - 4 2
Consequently,
g R Ry
o—sinal %z(a) _ | Bas(a) a ‘ V2 <270 0
sin a sin a a sin a 23!

Proposition 2.2 Leta € R with 0 < a < T and let

11
71k2k
(1

I
—~ (2k)!
Then
K—cosal o
cos a '

PRrOOF: Applying Taylor’s Theorem, we have, for all n € N and = € R,
cos © = Pp(x) + Ry (z)

3

where
2132 2134 (_1)nw2n n (—1)k$2k
Po(z)=1—" 4" — .. A
2n () STRR T e kz:% (2k)!
and
‘x‘2n+1

Thus, k = Pys(a) and
cos a = Kk + Raa(a)

where a2
a 1
R < —
[Baa(0)] < 5o < 531
Since cos a > cos § = ?
K—cosal Ry (a) < @ <91 O
cos a cos a 23!

Proposition 2.3 Leta € R with 0 < a < 7 and let 7 = 7, where o and & are defined
as in Propositions 2.1 and 2.2. Then

T —tan a 968
tan a
PRrROOF: Since

o sina o —sina sina(cosa—k) sina o—sina cosa—k
T—tan a = —— = + = - +

K cosa K K COS @ K sin a cos a
we have)

T—tana cosa (o—sina cosa—kK
tan a K sin a cos a '

As noted in the proof of Proposition 2.2, [cos a — k| < % and hence

K :cosa—(cosa—n) >1_|cosa—/$\ >1_£>1=
cos a cos a - cos a 23! 7 2

which yields

T —tan a cosa (o —sina cosa—k
tan a B K < sin a + cos a >
cos a o —sin a cos a — K
‘ K ‘(sin a cos a >

20270 +277)
= 27%. 0

N

3 The Logarithmic Function

Our approximation of log,z is based on the identity
nx
In

and the Maclauring series expansion of In(1 + z). Note that the estimate of In 2 derived
in the proof is used again in the approximation of 2% given in the next section.

logyz =

N

Proposition 3.1 For alln € N and x € R, let
n (_1)k+1wk

k=1
Let o
1 1
X 66 < 2) ;2,%

Given a € R, a > 0, let s and b be defined by a = 2°s, with b € 7 and 4 <5< V2,

and let 1
X

Then 0 <1In 2 —x <2772 gnd

log,a — A

<278,
logya

ProOF: By Taylor’s Theorem, for z > —1,

In(1+ z) = P,(z) + Ry (z),
where
(—1)"n! s

1 ‘QZ‘ n+1
I+ m+1)!| n+1 <1+c>

for some ¢ with |¢| < |z|. Thus, if [z| < {, then |R,,(z)| = 0 as n — oo and

‘Rn(x) =

0O (L 1)k+Lk
In(1+z) = Z%

k=1

A stricter bound on the remainder may be achieved by observing that

§ (_1)k+1$k § |w|k |w|n E k |w|n

Rn = - < P _

| Fon ()] k - k —n+1] “—n+1
k=n+1 k=n+1 k=1

In particular,

1 1 1 1 o

and
lfizm<4.2*72:2*70
x In2 xIn 2 '

V2
2

Since
—1<s—1<V2-1,

|s — 1| < 3. Also note that
log,a = b+ logys,

where

DN | =

1
3 < logys <
and hence

1 1
b—§<10g2a§b—|—§.

It follows that if b > 1, then log,a > %, and if b < 1, then logya < % Thus, whwnever

b # 0, |logyal > % > |s — 1|. Suppose b = 0. Then log,a = log,s. If s <1, then

logy | In s 1 /sdt 1 1dt> 1 [t |s—1\>| 1
0HS| = | — | = | —— —_— = — —_— _ — = S — .
259" w2l T m2), ¥| W2/, T w2/, T 2
Similarly, if s > 1, then
1 5 dt 1 fdt os—1 s—1
logys = — > = s—1.

- _ — = >
n2/; t " In2); s sln2~,2In?2

Thus, in all cases, we have
llog,a| > s — 1.

Therefore,
R,(s—1) < s — 1"t 1
log,s n+1 2n=1(p +1)
and
Pa(s—1) - el o v~ 1
— < -1 < 2.
Now
Ins=In(1+s—-1)=PFP,(s—1)+ R,(s— 1),
and hence
In s 1
10g2(l = b+10g25 = b+ E = b+ E(Pn(s —].) +Rn(5 — 1))

In particular,

1 1
logoa — A = |——=(P.(s—1)+ R,(s—1)) — —Fs5(s — 1)
In 2 X
1 1 1
— 2| |Pgs(s — 1)+ — ~1
< ma g | Pos (s)|+ln2\365(5)l
< 277 Pss(s — 1) + 2|Rgs(s — 1)
and .
<270 9242. — <279 0O

log,a — A
log,a 26466

4 The Exponential Function

In the proposition below, we derive an approximation p of 2* based on the definition

9 = o 102 45 the Taylor series expansion of e”. Since our concern is the relative
error of p — 1 as an approximation of 2* — 1, we establish a bound on

(-1 - -1 _[2°—p
20 — 1 20 —1|°

Proposition 4.1 Let a € R with 0 < |a| <1 and let

_ v (xa)f
P = Z k!
k=0
where x = 226:1 s+~ Then
2 —p 9—68
20 — 1

Proor: By Taylor’s Theorem, since
alln € N and z € R,

ddz,l €®| =0 = €*|,—0 = 1 for all n, we have, for

e’ = Py(z) + Rp(x),

where

2 2133 "

no_k

T
Pal) =1ta+ Tt bt =Y
’ k=0

xr
2l 31 k!

and
max(e®, 1)|z|" !

[Bn(2)] < (n+1)!

Note that p = Py2(xa). Thus,
2% — p =2 — eX + Ros(xa)
and
2 —p
a

2ﬂ _ exa

a

Ras(xa)

a

<

+

By Proposition 3.1, Y <In 2 < 1 and In 2 — x < 2772. Consequently,

Bon(xa) | _ |max(e D) | | 2% | _ 2,
a 23!-a 23! 23!
By the Mean Value Theorem,
el In 2 _ eXxa d
= ‘z—c =e°

aln2-—xa _%6

alnzgeln

for some ¢ between a In 2 and ya. But then e < e 2 = 2, and hence

20— ex?) = [e* 11 2 —exe| < 20a(ln 2 — y)| < 27
and

20 — eX?

a

< 2771

Thus,
2“_!’ <2 Tl 4970 969
a

Next, we shall derive an estimate of |(2* — 1)/a|. First suppose a > 0. Applying the
Mean Value Theorem again, we have
20—1 2v-2° 4

= —2%,—. = 2°n 2,
a a—0 dz | H

where 0 < ¢ < a, which implies
20 —1

> In 2.
Now suppose —1 < a < 0. Let f(z) = 2% —x/2. Since f”(x) = 2%(In 2)* > 0 for all z,

the maximum value of f(z) for —1 < z < 0 must occur at either z = —1 or z = 0. But
then since f(—1) =271 — (-1)/2 =1 and f(0) = 2° — 0/2 = 1, that maximum is 1. In

10

particular, f(a) =
(2 = 1)/a| > 3.
Thus, in all cases, [(2” — 1)/a| > 1, and hence

—a/2 < 1, which implies |2 = 1| =1—-2% > —a/2 = |a/2| and

2 —p _ 2 —p
20 —1 a

<2769.9 =976
2&1‘

5 Arc Tangent

We employ two distinct methods for approximating arc‘ran x, neither of which is sufficient
alone for the entire domain 0 < |z| < 1. For |z]| < 3, we use the Taylor series, which
converges too slowly for arguments close to 1. For |z| > 5, we use Medina’s result, which
provides a bound on absolute error from which we may derlve the required estimate of
relative error only if x is bounded away from 0.

Since the computation given by Theorem 1 is unwieldy in this case, we apply a more
direct computation in our derivation of the Taylor series. The two methods may be
shown to produce the same result, but this is irrelevant to our objective.

Proposition 5.1 Leta € R with 0 < |a| <1 and let

39 _1)k—1,2k—1 .
k=1 % if la| < %
a=9q h(a) if3<a<l1
—h7(—a) if —1<a< -1

Then

a — arctan a 968

arctan a

PrOOF: First consider the case a < % By the Mean Value Theorem, for some c,
0 < |ef < lal,

arctan a d " | 1 S 1 4
————— = —arctan z|,—, = . = _.
a dz T 142 T 144 5
For n € N, let
T (—1)n—1g2n-1 n Yh1g2k-1
Qnlo) == b b = ; g

Beginning with the algebraic identity

1 . z
=l4z4+2"+ - +2""+ —
1—=2 1—2z

and substituting —xz2 for z, we hace

1
1422

(_1)nw2n
1+ 22

:1_$2+$4__'_+(_1)n71w2n72+

Consequently,

@ a (1\n,.2n
arctana:/ d—r —Qn() / M
0 0

1+ 22 1+ 22

11

and hence

|Qn(a) — arctan a| =

lal p2n |al 2n+1
</ v "dz </ z?"dr = o] .
—Jo 1422~ J, 2n+1

/a (—1)"z?"dx
0 1+ a2

In particular, since a = @32(a)

a —arctan a| _ |al% 1
a - 65 20465
Thus,
a — arctan a o — arctan a a 1 5 _68
= < S— <2700
arctan a a arctan al — 26465 4

Now consider the case |a| > 3. If a > 3, then by Theorem 2,

1\ 3
|h7(a) — arctan a| < <Z> =277

In order to establish a lower bound for arctan a, we apply the identity

_17(30820

tan?) = ———
an 1+ cos 260

which yields

ta?n_l—g_zf\/ﬁ_(%ﬁﬁ 1
n°— = — = = < -
8 142 2442 2 4

ie, tan g < %, and hence
1 s
arctan a > arctan — > —.
2 8

Thus,
a — arctan a

<2770, 8 < 2708,

arctan a arctan a ™

B ‘h7(a) — arctan a

On the other hand, if a < —%7 then

a — arctan a —h7(—a) — arctan(—a)

<2788 o

arctan a

_ ‘ —h7(—a) — arctan a

arctan a - arctan(—a)

References

[1] Advanced Micro Devices, Inc., AMD6j Architecture Programmer’s Manual,
Rev. 3.11, December 2005.

[2] Institute of Electrical and Electronic Engineers, IEEE Standard for Binary Floating
Point Arithmetic, Std. 754-1985, New York, N.Y., 1985.

[3] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual,
April 2008.

[4] Medina, Herbert A., “A Sequence of Polynomials for Approximating Arctangent”,
American Mathematical Monthly (113), pp.156-161, February 2006.

12

